K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi d=UCLN(4n+8;2n+3)

\(\Leftrightarrow4n+8-4n-6⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+3 là số lẻ

nên d=1

=>ĐPCM

b: Gọi a=UCLN(7n+4;9n+5)

\(\Leftrightarrow63n+36-63n-35⋮a\)

=>a=1

=>ĐPCM

8 tháng 4 2022

Me cảm lan bẹn!

9 tháng 2 2020

Nhớ trả lời nhanh nha

a: Gọi d=ƯCLN(2n+7;n+3)

=>2n+7-2n-6 chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số tối giản

b: Gọi d=ƯCLN(5n+7;2n+3)

=>10n+14-10n-15 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ĐPCM

c: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ĐPCM

Bạn tham khảo chỉ thay số thôi nha:

https://olm.vn/hoi-dap/detail/211315812824.html

Chúc bạn học tốt

Forever

27 tháng 2 2020

4n+1/12n+7

Ta thấy:

3.(4n+1)=12n+3

nên 12n+7-(12n+3) chia hết 4n+1 hay 4 chia hết cho 4n+1

Suy ra 4-1 chia hết cho 4n hay 3 chia hết cho 4n

mà n thuộc n nên n rỗng

Vậy n rỗng 

a: Vì n+1 và n+2 là hai số tự nhiên liên tiếp

nên UCLN(n+1,n+2)=1

hay A là phân số tối giản

b: Gọi a là UCLN(n+4;2n+9)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+9⋮a\\2n+8⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)

Vậy: B là phân số tối giản

c: Gọi b là UCLN(12n+1;30n+2)

\(\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮b\\60n+4⋮b\end{matrix}\right.\Leftrightarrow1⋮b\Leftrightarrow b=1\)

Vậy: C là phân số tối giản

7 tháng 1 2022

cảm ơn bạn/chị

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

2 tháng 8 2015

a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:

15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d

30n+1 chia hết cho d

=> 30n+2-(30n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(15n+1; 30n+1) = 1

=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)

Các phần sau tương tự

21 tháng 4 2016

Để 12n+1/30n+2 là phân số tối giản thì 12n+1 và 30n+2 phải có ƯCLN bằng 1

Gọi d là ƯCLN của 12n+1 và 30n+2 

12n+1 chia hết cho  d

30n+2 chia hết cho d

suy ra (30n+2 )-(12n+1) chia hết cho d

         = 30n+2-12n-1 chia hết cho d

         =(30n-12n) + (2-1)chia hết cho d

         =8n+1

8n chia hết cho d , 1 chia hết cho d

suy ra n= 8n thì 12n+1/30n+2  la  p/s tối giản

21 tháng 4 2016

Bài tương tựGọi ước chung lớn nhất của 15n + 1 và 30n + 1 là d (d thuộc N*) 
=> 15n + 1 chia hết cho d 
30n + 1 chia hết cho d 
=> 2(15n + 1) chia hết cho d 
1(30n + 1) chia hết cho d 
=> 30n + 2 chia hết cho d 
30n + 1 chia hết cho d 
=>(30n + 2) - (30n + 1) chia hết cho d 
=> 1 chia hết cho d 
Do d thuộc N* 
=> d=1 
=>Ước chung lớn nhất của 15n + 1 và 30n + 1 là 1 
=> 15n +1 và 30n + 1 là 2 số nguyên tố cùng nhau 
=>15n + 1/30n + 1 là phân số tối giản với n thuộc N (điều phải chứng minh) 
Cho mình 5* pn nké.Hì.Thân.Chúc học giỏi

20 tháng 4 2015

Đặt (12n+1,30n+20) = d Ta có:(12n+1) chia hết cho d và (30n+2) chia hết cho d suy ra 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d suy ra 60n+5 chia hết cho d và 60n+4 chia hết cho d suy ra 1 chia hết cho d suy ra d=1 (vì n thuộc N nên d thuộc n)Vậy 12n+1/30n+2 là phân số tối giản

26 tháng 2 2017

ta co:(12n+1) chia het cho d va (30n+2)chia het cho d

suy ra, 5(12n+1)chia het cho d va 2(30n+2) chia het cho d

suy ra,60n+5 chia het cho d va 60n+4 chia het chod

suy ra, 1 chia het cho d suy ra d=1(vi n thuoc N nen d thuocn)

Vay 12n+1/30n+2 la phan so toi gian

14 tháng 4 2017

Giả sử cả 12n+1 và 30n+2 đều chia hết cho d

=> 12n+1 chia hết cho d và 30n+2 chia hết cho d

=> 5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d

=> 60n+5 chia hết cho d và 60n+4 chia hết cho d

=> 60n+5-60n-4 chia hết cho d

<=> 1 chia hết cho d

=> d=1

Vậy \(\frac{12n+1}{30n+2}\)là tối giản với mọi n thuộc N