\(\frac{3n+2}{5n+3}\)là phân số tối giản

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

Cm nó là hai sô nguyên tố cùng nhau

2 tháng 3 2019

Giải

gọi d=ƯCLN(3n+2;5n+3) (d thuộc N*)f 5n+3

suy ra 3n+2 chia hết cho d và 5n+3 chia hết cho d

ta có 5.(3n+2) chia hết cho d và 3.(5n +3) chia hết cho d

15n+10 chia hết cho d;15n+9 chia hết cho d

suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d .Vậy d=1

Vì d=1 nên 3n+2/5n+3 là ps tối giản

Vậy......

chúc bạn học tốt!!!!

23 tháng 3 2021

\(\text{Giải: }\)

\(\text{Gọi ƯCLN ( 3n + 2 ; 5n + 3 ) = d }\)\(\left(d\in N\text{* }\right)\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}\Rightarrow\left(15n+10\right)-\left(15n+9\right)}\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\text{3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau}\)

\(\Rightarrow\frac{3n+2}{5n+3}\text{là phân số tối giản }\)

\(\text{Vậy ..................................}\)

có j thắc mắc thì ib cho  mk nhé

24 tháng 3 2021

Đặt ƯCLN  \(3n+2;5n+3=d\)( d \(\inℕ^∗\))

Ta có : \(3n+2⋮d\Rightarrow15n+10⋮d\)(1) 

\(5n+3⋮d\Rightarrow15n+9⋮d\)(2)

Lấy (1) - (2) ta được : \(15n+10-15n-9⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

4 tháng 7 2016

Gọi ƯCLN(3n+2;5n+3)=d

=>3n+2 chia hết cho d và 5n+3 chia hết cho d

=>(3n+2)-(5n+3) chia hết cho d

=>(15n+10)-(15n+9) chia hết cho d

=>1 chia hết cho d

=>d=1

Vì ƯCLN(3n+2;5n+3)=1 nên phân số \(\frac{3n+2}{5n+3}\) tối giản

4 tháng 7 2016

Gọi d là ƯC của 3n + 2 và 5n + 3

Khi đó 3n + 2 chia hết cho d và 5n + 3 chia hết cho d

<=>5.(3n + 2) chia hết cho d và 3.(5n + 3) chia hết cho d 

<=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d

=>(15n + 10) - (15n + 9) = 1  => 1 chia hết cho d=>d = 1

Vậy mọi phân số có dạng  \(\frac{3n+2}{5n+3}\) tối giản

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

Gọi d là ƯCLN(5n+2;3n+1)

Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d

=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d

=>15n+6\(⋮\)d;15n+5\(⋮\)d

=>[(15n+6)-(15n+5)]\(⋮\)d

=>[15n+6-15n-5]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)

 
14 tháng 11 2017

a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau 

mk làm mẫu 1 câu nha

Gọi d là UCLN(n+1;2n+3)

=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d

=>4n+3 chia hết cho d

=> 4n+3-4n-2 chia hết cho d

<=> 1 chia hết cho d=> d= 1

d=1=>\(\frac{n+1}{2n+3}\)tối giản

14 tháng 11 2017

b) Gọi d là UCLN(2n+3;4n+8)

=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d

=>4n+8\(⋮\)d

=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2

mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1

vây \(\frac{2n+3}{4n+8}\)tối giản

26 tháng 1 2019

Tham khảo nha : 

       Chứng minh rằng 2 phân số tối giản vs mọi số tự nhiên n :       

...p/s

14 tháng 5 2017

a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]

b) Gọi d là ước chung lớn nhất của 3n và 3n+1

=> 3n \(⋮\)

Và: 3n+1 \(⋮\)d

=> (3n+1)-3n \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\)Ư(1)

=> d \(\in\){ 1}

Vậy \(\frac{3n}{3n+1}\)là phân số tối giản

Duyệt đi, chúc bạn học giỏi!

8 tháng 6 2017

\(\frac{3n}{3n+1}\)