Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Giải: }\)
\(\text{Gọi ƯCLN ( 3n + 2 ; 5n + 3 ) = d }\)\(\left(d\in N\text{* }\right)\)
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}15n+10\\15n+9\end{cases}\Rightarrow\left(15n+10\right)-\left(15n+9\right)}\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\text{3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau}\)
\(\Rightarrow\frac{3n+2}{5n+3}\text{là phân số tối giản }\)
\(\text{Vậy ..................................}\)
có j thắc mắc thì ib cho mk nhé
Đặt ƯCLN \(3n+2;5n+3=d\)( d \(\inℕ^∗\))
Ta có : \(3n+2⋮d\Rightarrow15n+10⋮d\)(1)
\(5n+3⋮d\Rightarrow15n+9⋮d\)(2)
Lấy (1) - (2) ta được : \(15n+10-15n-9⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi ƯCLN(3n+2;5n+3)=d
=>3n+2 chia hết cho d và 5n+3 chia hết cho d
=>(3n+2)-(5n+3) chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>1 chia hết cho d
=>d=1
Vì ƯCLN(3n+2;5n+3)=1 nên phân số \(\frac{3n+2}{5n+3}\) tối giản
Gọi d là ƯC của 3n + 2 và 5n + 3
Khi đó 3n + 2 chia hết cho d và 5n + 3 chia hết cho d
<=>5.(3n + 2) chia hết cho d và 3.(5n + 3) chia hết cho d
<=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d
=>(15n + 10) - (15n + 9) = 1 => 1 chia hết cho d=>d = 1
Vậy mọi phân số có dạng \(\frac{3n+2}{5n+3}\) tối giản
Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)
Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)
\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)
\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)
\(\Rightarrow5n+1⋮d\)
\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!
Cm nó là hai sô nguyên tố cùng nhau
Giải
gọi d=ƯCLN(3n+2;5n+3) (d thuộc N*)f 5n+3
suy ra 3n+2 chia hết cho d và 5n+3 chia hết cho d
ta có 5.(3n+2) chia hết cho d và 3.(5n +3) chia hết cho d
15n+10 chia hết cho d;15n+9 chia hết cho d
suy ra (15n+10)-(15n+9) chia hết cho d hay 1 chia hết cho d .Vậy d=1
Vì d=1 nên 3n+2/5n+3 là ps tối giản
Vậy......
chúc bạn học tốt!!!!