Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
mk chỉ giải tóm tắt thôi có gì ko hiểu bạn nhắn tin cho mk cùng
https://olm.vn/hoi-dap/detail/57396353599.html
phần c mk cũng chưa làm đc
a, ta có Cos C=\(\frac{CF}{EC}\)
C/m tam giác CEF đồng dạng với tam giác CBA (g-g)
=> \(\frac{CF}{EC}=\frac{AC}{BC}\)
=> tam giác AFC và tam giác BEC dồng dạng (c-g-c)
=>\(\frac{CF}{EC}=\frac{AF}{AE}\)
=> Cos C =\(\frac{AF}{BE}\)=> BE.Cos C= BE.\(\frac{AF}{BE}\)=AF(đpcm)
b,
bn áp dụng các hệ thức về góc và cạnh trong tam giác vuông
mỗi cạnh góc vuông bằng cạnh huyền.Sin góc đối để tính AB,AC trong tam giác ABC vuông
=> AE=EC=AC:2=...(bn tu tinh nha)
xét tam giác CEF vuông tại C
lại áp dụng công thức trên để tính È
=> FC=....(Theo Pi-ta-go)
=>BF=BC-FC
=>BF=....
=>bn tính SABE VÀ SBEF sau đó cộng lại là ra SABFE
- NẾU CÓ BN NÀO GIẢI ĐƯỢC PHẦN C THÌ GIÚP MK VS
- *****CHÚC BẠN HỌC GIỎI*****
Câu a đb như vậy cm sao được...
Gọi AB=c,BC=a,AC=b.Kẻ phân giác AD của góc A,kẻ BH vuông góc AD.
Dễ dàng cm được \(\sin\frac{A}{2}\le\frac{a}{b+c}\)
Từ đó suy ra \(\sin\frac{A}{2}.\sin\frac{B}{2}.\sin\frac{C}{2}\le\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{abc}{8abc}=\frac{1}{8}\) (theo CAUCHY)