Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
ta có số nguyên tố là các số có ước là 1 và chính nó .
theo quy luật trên ta có ví dụ mẫu :
32 - 1
= 9 - 1 = 8
mà
22 - 1
= 4 - 1 = 3
3 chia hết cho 3
kết luận : số nguyên tố p tồn tại thỏa mãn yêu cầu , nhưng không phải số nguyên tố nào cũng vậy .
a)2x+y=7(2x+y)=14x+7y
Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9
9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9
b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2
p là số nguyên tố lớn hơn 3 nên
*)P=3k(loại vì 3k là hợp số có ước là 3 và k)
*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)
*)p=3k+2(TM)
=>2p+2=6k+4+2=6k+6 chia hết cho 3
2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6
=>(2p+2).1/2=p+1 chia hết cho 6