Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{zx+zy+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{zx+zy+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(zx+zx+z^2+xy\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(z+x\right)\left(z+y\right)=0\Rightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
Dù trường hợp nào thay vào thì ta luôn có \(\left(x^3+y^3\right)\left(y^5+z^5\right)\left(x^7+z^7\right)=0\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
(x+y+z)(xy+yz+xz)=xyz
google seach
ta suy ra
(x+y)(y+z)(z+x)=0
\(x=-y\)
\(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{-y^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)
\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{-y^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)
suy ra \(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\)
Làm tương tự với các TH x= -z và y= -z
Từ đó ta được điều phải cm
\(\frac{x+4}{2007}+\frac{x+8}{2003}=\frac{x+1}{2010}=\frac{x+3}{2008}\)
\(\Leftrightarrow\frac{x+4}{2007}=\frac{x+1}{2010}\)
\(\Leftrightarrow\left(x+4\right)2010=\left(x+1\right)2007\)
\(\Leftrightarrow2010x+8040=2007x+2007\)
\(\Leftrightarrow2010x-2007x=2007-8040\)
\(\Leftrightarrow3x=-6033\)
\(\Leftrightarrow x=-2011\)
\(\frac{x+4}{2007}+\frac{x+8}{2003}=\frac{x+1}{2010}+\frac{x+3}{2008}\)
=>\(\left(\frac{x\text{+4}}{2007}+1\right)+\left(\frac{x+8}{2003}+1\right)=\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+3}{2008}+1\right)\)
=>\(\frac{x+2011}{2007}+\frac{x+2011}{2003}=\frac{x+2011}{2010}+\frac{x+2011}{2008}\)
=>\(\frac{x+2011}{2007}+\frac{x+2011}{2003}-\frac{x+2011}{2010}-\frac{x+2011}{2008}=0\)
=>\(x+2011\left(\frac{1}{2007}+\frac{1}{2003}-\frac{1}{2010}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2007}+\frac{1}{2003}-\frac{1}{2010}-\frac{1}{2008}\ne0\)
=> x+2011=0
=>x=-2011
Vậy x = -2011
Lời giải:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)
\(\Leftrightarrow (x+y)\left(\frac{1}{xy}+\frac{1}{z(x+y+z)}\right)=0\)
\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)
\(\Leftrightarrow (x+y).\frac{z(y+z)+x(z+y)}{xyz(x+y+z)}=0\)
\(\Leftrightarrow \frac{(x+y)(z+x)(z+y)}{xyz(x+y+z)}=0\Rightarrow (x+y)(y+z)(x+z)=0\)
\(\Rightarrow \left[\begin{matrix} x=-y\\ y=-z\\ z=-x\end{matrix}\right.\)
Không mất tổng quát, giả sử \(x=-y\):
\(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{(-y)^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)
\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{(-y)^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)
Do đó: \(\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\) (đpcm)
\(\dfrac{xy+xz+yz}{xyz}=\dfrac{1}{x+y+z}\)
\(\left(xy+xz+yz\right)\left(x+y+z\right)=xyz\)
\(x^2y+xy^2+xyz+x^2z+xyz+xz^2+xyz+y^2z+z^2y=xyz\)
\(x^2\left(y+z\right)+xy\left(y+z\right)+xz\left(z+y\right)+yz\left(y+z\right)=0\)
\(\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)
\(\left[{}\begin{matrix}x=-y\\z=-x\\y=-z\end{matrix}\right.\)
\(\dfrac{1}{x^{2003}}+\dfrac{1}{y^{2003}}+\dfrac{1}{z^{2003}}=\dfrac{1}{z^{2003}}=\dfrac{1}{x^{2003}+y^{2003}+z^{2003}}\)
Ta có: \(x+y+z=0\)
\(\Leftrightarrow\) \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz =0)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)
\(x;y;z\ne0\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\xy=-z\left(x+y+z\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\xy+xz+yz+z^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\\left(x+z\right)\left(y+z\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
- Với \(x=-y\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{-y^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{z^{2003}}\)
\(\frac{1}{x^{2003}+y^{2003}+z^{2003}}=\frac{1}{-y^{2003}+y^{2003}+z^{2003}}=\frac{1}{z^{2003}}\)
\(\Rightarrow\frac{1}{x^{2003}}+\frac{1}{y^{2003}}+\frac{1}{z^{2003}}=\frac{1}{x^{2003}+y^{2003}+z^{2003}}\)
2 trường hợp còn lại tương tự