K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

Vì (7n + 1) - n = 6n + 1 là số lẻ nên trong hai số 7n + 1 và n có đúng một số chẵn \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 2 (1)

Xét 3 TH:

+) n = 3k (k \(\in\) N): Khi đó n \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3

+) n = 3k + 1 (k \(\in\) N): Khi đó 2n + 7 = 2(3k + 1) + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3

+) n = 3k + 2 (k \(\in\) N): Khi đó 7n + 1 = 7(3k + 2) + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3

Từ đó suy ra A = n(2n + 7)(7n + 1) \(⋮\) 3 (2)

Từ (1) và (2) suy ra A \(⋮\) 6 (đpcm)

20 tháng 11 2014

B,

6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1

Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ

Ư (4) ={ 1;2;4}

Vì n là số lẻ nên

2n + 1 =1 

 2n       =1-1

2n        =0

 n          = 0 : 2 =0

Vậy n =0

30 tháng 12 2015

A3n+7 chia het cho n+2

3n-12+5 chia het cho n+2

(3n-12)+5 chia het cho n+2

3(n-4)+5 chia het cho n+2

=>5 chia het cho n+2

=>n+2 thuoc (U)5={1;-1;5;-5}

Neu:n+2=1=>n=-1(loai)

Neu:n+2=-1=>n=-3(loai)

Neu:n+2=5=>n=3

Neu:n+2=-5=>n=-7(loai)

Vay:n=3

n+4:n+2

n+2+2:n+2

ma n+2:n+2

suy ra 2:n+2

n+2 là ước của 2

ước của 2 là :1,-1,2,-2

n+2=1 suy ra n=1-2 suy ra n=?

các trường hợp khác làm tương tự nhà và cả phần b nữa

3n+7:n+1

(3n+3)+3+7:n+1

3(n+1)+10:n+1

ma 3(n+1):n+1

suy ra 10:n+1 va n+1 thuoc uoc cua 10

den day lam nhu phan tren la duoc 

nhớ **** mình nha

6 tháng 1 2018

n + 4\(⋮\)n+2
=> ( n + 2) + 2 \(⋮\)n + 2  mà n + 2\(⋮\)n+2
=>2 \(⋮\)n+ 2
=> n +2\(\in\)Ư(2)={1;2}
=> n \(\in\){ -1:0} mà n \(\in\)N
=> n\(\in\){0}
    Vậy n= 0

7 tháng 12 2017

đặt A = n . ( 2n + 7 ) . ( 7n + 1 )

Ta thấy trong 2 số n và 7n + 1 sẽ có 1 số chẵn với mọi n thuộc N

A = n . ( 7n + 1 ) \(⋮\)2 ( 1 )

Ta cần chứng minh : n . ( 2n + 7 ) . ( 7n + 1 ) \(⋮\)

Giả sử : n = 3k + r ( k \(\in\)N , r = { 0 ; 1 ;2  } )

với n = 3k \(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(⋮\)3

với n = 3k + 1 \(\Rightarrow\)2n + 7 = 6k + 9 \(⋮\)\(\Rightarrow\)\(⋮\)3

với n = 3k + 2 \(\Rightarrow\)7n + 1 = 21k + 15 \(⋮\)\(\Rightarrow\)\(⋮\)3

Như vậy, A \(⋮\)\(\forall\)\(\in\)N ( 2 )

Mà ( 2 ; 3 ) = 1 

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(⋮\)6

7 tháng 12 2017

lên mạng có thì phải