Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (7n + 1) - n = 6n + 1 là số lẻ nên trong hai số 7n + 1 và n có đúng một số chẵn \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 2 (1)
Xét 3 TH:
+) n = 3k (k \(\in\) N): Khi đó n \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
+) n = 3k + 1 (k \(\in\) N): Khi đó 2n + 7 = 2(3k + 1) + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
+) n = 3k + 2 (k \(\in\) N): Khi đó 7n + 1 = 7(3k + 2) + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
Từ đó suy ra A = n(2n + 7)(7n + 1) \(⋮\) 3 (2)
Từ (1) và (2) suy ra A \(⋮\) 6 (đpcm)
B,
6n+7 = 6n + 3 +4= 3(2n+1)+4 chia hết cho 2n + 1
Suy ra 4 chia hết cho 2n + 1 Suy ra 2n +1 thuộc Ư (4)) và n là số lẻ
Ư (4) ={ 1;2;4}
Vì n là số lẻ nên
2n + 1 =1
2n =1-1
2n =0
n = 0 : 2 =0
Vậy n =0
A3n+7 chia het cho n+2
3n-12+5 chia het cho n+2
(3n-12)+5 chia het cho n+2
3(n-4)+5 chia het cho n+2
=>5 chia het cho n+2
=>n+2 thuoc (U)5={1;-1;5;-5}
Neu:n+2=1=>n=-1(loai)
Neu:n+2=-1=>n=-3(loai)
Neu:n+2=5=>n=3
Neu:n+2=-5=>n=-7(loai)
Vay:n=3
n+4:n+2
n+2+2:n+2
ma n+2:n+2
suy ra 2:n+2
n+2 là ước của 2
ước của 2 là :1,-1,2,-2
n+2=1 suy ra n=1-2 suy ra n=?
các trường hợp khác làm tương tự nhà và cả phần b nữa
3n+7:n+1
(3n+3)+3+7:n+1
3(n+1)+10:n+1
ma 3(n+1):n+1
suy ra 10:n+1 va n+1 thuoc uoc cua 10
den day lam nhu phan tren la duoc
nhớ **** mình nha
n + 4\(⋮\)n+2
=> ( n + 2) + 2 \(⋮\)n + 2 mà n + 2\(⋮\)n+2
=>2 \(⋮\)n+ 2
=> n +2\(\in\)Ư(2)={1;2}
=> n \(\in\){ -1:0} mà n \(\in\)N
=> n\(\in\){0}
Vậy n= 0
đặt A = n . ( 2n + 7 ) . ( 7n + 1 )
Ta thấy trong 2 số n và 7n + 1 sẽ có 1 số chẵn với mọi n thuộc N
A = n . ( 7n + 1 ) \(⋮\)2 ( 1 )
Ta cần chứng minh : n . ( 2n + 7 ) . ( 7n + 1 ) \(⋮\)3
Giả sử : n = 3k + r ( k \(\in\)N , r = { 0 ; 1 ;2 } )
với n = 3k \(\Rightarrow\)n \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
với n = 3k + 1 \(\Rightarrow\)2n + 7 = 6k + 9 \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
với n = 3k + 2 \(\Rightarrow\)7n + 1 = 21k + 15 \(⋮\)3 \(\Rightarrow\)A \(⋮\)3
Như vậy, A \(⋮\)3 \(\forall\)n \(\in\)N ( 2 )
Mà ( 2 ; 3 ) = 1
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A \(⋮\)6