K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

Tại sao phài chứng minh khi nhìn vào đã biết

13 tháng 9 2018

Easy:Tck cho mh đi

13 tháng 9 2018

có (n+2003^2004)

nếu n là số lẻ thì(n+2003^2004) là số chẵn

nếu n là số chẵn thì(n+2003^2004) là số lẻ

có (n+2003^2004) 

nếu n là số lẻ thì(n+2003^2004) là số lẻ

nếu n là số chẵn thì(n+2003^2004) là số chẵn

chẵn x lẻ =chẵn

lẻ x chẵn=chẵn

=>(n+2003^2004)x(n+2004^2005)  chia hết cho 2

11 tháng 1 2017

Theo bài ra , ta có 3 trg hợp n : 

TH1 : n chia hết cho 3 .

Nếu n chia hết cho 3 thì tích trên đã đc chia hết cho 3 .

TH2 : n chia 3 dư 1 

Nếu n chia 3 dư 1 thì (n + 2 ) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .

TH3 : n chia 3 dư 2 

Nếu n chia 3 dư 2 thì (n+7) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .

Vậy : Với mọi trg hợp n thì tích n(n+2)(n+7) đều chia hết cho 3 .

11 tháng 1 2017

ta có: n(n+2)(n+7) \(⋮\)3.

đặt A = n(n+2)(n+7)

 vì n là số tự nhiên. khi chia n cho 3 ta có 3 dạng:n=3k; n=3k+1; n=3k+2 ( k\(\in\)  N )                         

nếu n=3k => n \(⋮\)

=> A \(⋮\)3. (1)

nếu n=3k+1 => n+2=3k+1+2

                            =3k+3 \(⋮\)3

=> A \(⋮\)(2)

nếu n=3k+2 => n+7=3k+2+7

                            =3k+9 \(⋮\)3

=> A \(⋮\)(3)

từ (1);(2) và (3) => A \(⋮\)3 với mọi n .

vậy  n(n+2)(n+7) \(⋮\)3.với mọi n .

chcs năm mới vui vẻ, k nha...

27 tháng 12 2015

20124n+3-3

=20124n.20123-3

=.......6  .   ........8   -  3

=.............5    chia hết cho 5

15 tháng 11 2018

\(n+2⋮n-1\)\(\Rightarrow n-1+3⋮n-1\)

\(\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)\) \(\Rightarrow n-1\in\left(\pm1;\pm3\right)\)

còn lại chắc bạn làm được

15 tháng 11 2018

các bạn lm thì giải rõ ràng nhé

26 tháng 10 2018

b)2625 có chữ số tận cùng là 5;175 cũng có chữ số tận cùng là 5 suy ra 2625 chia hết cho 175

26 tháng 10 2018

Ko chi tiết hiền nguyễn à

8 tháng 8 2016

+ Nếu n lẻ thì 3n lẻ => 3n + 1 chẵn => 3n + 1 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2

+ Nếu n chẵn thì n + 2 chẵn => n + 2 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2

Vậy B = (n + 2).(3n + 1) luôn chia hết cho 2 (đpcm)

15 tháng 5 2018

Ta xét từng trường hợp sau:

 Nếu n là số lẽ thì n chia hết cho 2 =>    B chia hết cho 2

Nếu n chẵn thì n+2 chẵn => n+2 chia hết cho 2 => B chia hết cho 2

Vậy \(B=\frac{n+2}{3n+1}\)chia hết cho 2