K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

Ta có:

\(M=x^2+2+2y\left(x+y-1\right)=x^2+2+2xy+2y^2-2y=x^2+2xy+y^2+y^2-2y+2\)

\(M=\left(x+y\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

5 tháng 3 2021

Với mọi x, y khác 0 ta có 

\(x^4>0\)

\(y^4>0\)

=> \(x^4.y^4>0\)

=> A > 0 \(\forall x,y\ne0\)

a) Ta có: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)

\(=x^4y^4\)

b) Bậc của đơn thức là 8

1: \(M=0\)

mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)

nên x-2021=0 và 2021-y=0

=>x=2021 và y=2021

4 tháng 4 2022

cảm ơn bạn nhiều nha

26 tháng 3 2018

M=5ax2y2+(-1/22y2)+7ax2y2+(-x2y2)

M=[5a+(-1/2a)+7a+(-1)]x2y2

M=(23/2a-1)x2y2

a; Nếu M không âm với mọi x, y thì (23/2a-1) phải lớn hơn hoặc bằng 0 hay a lớn hơn hoặc bằng 23/2

b; Tương tự thì (23/2a-1) phải bé hơn hoặc bằng 0 hay a bé hơn hoặc bằng 23/2

a: M=x^2y^2(5a-1/2a+7a-1)

=(23/2a-1)*x^2y^2

M>=0

=>23/2a-1>=0

=>23/2a>=1

=>a>=2/23

b: M<=0

=>23/2a-1<=0

=>a<=2/23

c: a=2 thì M=22x^2y^2

M=84

=>x^2y^2=84/22=42/11

mà x,y nguyên

nên \(\left(x,y\right)\in\varnothing\)

20 tháng 7 2023

M = 5x^2y^2+(-1/2ax^2y^2)+7ax^2+(-x^2y^2)

M=(5a+(-1/2a)+7a+(-1)) . x^2y^2

M= (23/2a - 1) x^2y^2

a)voi gia tri nao cua a thi M ko am

⇒M ≥ 0 ⇒(23/2a - 1).x^2y^2 ≥0

  ⇒23/2a - 1 ≥ 0 vi x^2y^2 ⇒0 ∀ x;y

     ⇒23/2a ≥ 0

     ⇒a ≥ . 2/23

     ⇒a ≥ 2/23

Vay a ≥ 2/23 thi M ko am voi moi x;y

b)Voi gia tri nao cua a thi M ko dg

⇒M ≤ 0 ⇒ (23/2a - 1).x^2y^2 ≤ 0 ∀ x.y

⇒23/2a ≤ 1

⇒ a ≤ 2/23

Voi moi a ≤2/23 thi M ko duong voi moi x;y

c) Thay a=2 vao M ta dc:

    M= (23.2:2 -1).x^2y^2

    M=22x^2y^2

De M=88 ⇒22x^2y^2 =88 ⇒x^2y^2=4

                ⇒(xy^2)= 2^2 ⇒ xy=2

                ⇒x= 2⇒y=1 ; x=1⇒y=2 ; x=-2 ⇒y=-1 ; x=-1y⇒-2

Vay(x;y)= ( (2;1); (1;2); (-2;-1); (-1;-2) thi M = 88

 

(ko danh dc dau cua chu ban thong cam cho mik)