K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2023

Lời giải:

$M=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+....+\frac{100}{3^{100}}$

$3M=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}$

$\Rightarrow 2M=3M-M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}$

$2M+\frac{100}{3^{100}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$

$3(2M+\frac{100}{3^{100}})=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}

$\Rightarrow 2(2M+\frac{100}{3^{100}})=3(2M+\frac{100}{3^{100}})-(2M+\frac{100}{3^{100}})=2-\frac{1}{3^{99}}$

$M=\frac{1}{2}-\frac{1}{4.3^{99}}-\frac{50}{3^{100}}<\frac{1}{2}< \frac{3}{4}$ 
Ta có đpcm.

14 tháng 11 2023

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

27 tháng 6 2017

\(M=\dfrac{1}{3}+\dfrac{2}{3^2}+...+\dfrac{100}{3^{100}}\)

\(\Rightarrow3M=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)

\(\Rightarrow3M-M=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+...+\dfrac{100}{3^{100}}\right)\)

\(\Rightarrow2M=1+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\dfrac{100}{3^{100}}\)

\(\Rightarrow2M=1+\dfrac{1}{2}-\dfrac{1}{3^{99}.2}-\dfrac{100}{3^{100}}\)

\(\Rightarrow M=\dfrac{3}{4}-\dfrac{1}{3^{99}.4}-\dfrac{50}{3^{100}}< \dfrac{3}{4}\)

Vậy...

9 tháng 3 2022

xin lỗi nha mình gửi lộn ak

 

6 tháng 11 2017

nhân 3 trừ đi sau đó xét cái sau sẽ thấy B<3/4

Lười lắm

6 tháng 11 2017

Làm hộ bạn ý đi,t cx lười :v

31 tháng 7 2017

Đặt A = \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{100}}\)

\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)

\(2A=3A-A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)Đặt B= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(2B=3B-B=3-\dfrac{1}{3^{99}}\)

Nhận xét : 2B < 3 => B < \(\dfrac{3}{2}\)

=> \(B-\dfrac{100}{3^{100}}< \dfrac{3}{2}\) hay 2A < \(\dfrac{3}{2}\)

=> Đpcm

***tik mik nhé***

9 tháng 9 2017

Ta có :

3M=1+2/3+3/3^2+...+100/3^99

Suy ra :

2M=1+(1/3+1/3^2+1/3^3+...+1/3^99)-100/3^100

Xét B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)

3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)

2B=1-\(\dfrac{1}{3^{99}}\)<1/2

Suy ra : 2M<1+1/2 nên M<3/4

22 tháng 8 2017

\(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\\ 3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\\ 3A-A=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\\ 2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(6A=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\\ 6A-2A=\left(3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\\ 4A=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\\ A=\dfrac{3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}}{4}=\dfrac{3}{4}-\dfrac{\dfrac{101}{3^{99}}}{4}-\dfrac{\dfrac{100}{3^{100}}}{4}< \dfrac{3}{4}\)

Vậy ...

14 tháng 1 2021

\(2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+...+\dfrac{100}{2^{99}}\)

=> \(2A-A=A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+....+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)

Đặt \(B=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}\)

=> \(2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{98}}\)

=> \(B=\dfrac{1}{2^2}-\dfrac{1}{2^{99}}\)

=> \(A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{100}{2^{100}}-\dfrac{1}{2^{99}}\)

=> \(A=2-\dfrac{102}{2^{100}}< 2\)