Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)
\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)
\(M=\dfrac{1}{3}+\dfrac{2}{3^2}+...+\dfrac{100}{3^{100}}\)
\(\Rightarrow3M=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)
\(\Rightarrow3M-M=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+...+\dfrac{100}{3^{100}}\right)\)
\(\Rightarrow2M=1+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\dfrac{100}{3^{100}}\)
\(\Rightarrow2M=1+\dfrac{1}{2}-\dfrac{1}{3^{99}.2}-\dfrac{100}{3^{100}}\)
\(\Rightarrow M=\dfrac{3}{4}-\dfrac{1}{3^{99}.4}-\dfrac{50}{3^{100}}< \dfrac{3}{4}\)
Vậy...
Đặt A = \(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{100}}\)
\(\Rightarrow3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\)
\(2A=3A-A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)Đặt B= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(2B=3B-B=3-\dfrac{1}{3^{99}}\)
Nhận xét : 2B < 3 => B < \(\dfrac{3}{2}\)
=> \(B-\dfrac{100}{3^{100}}< \dfrac{3}{2}\) hay 2A < \(\dfrac{3}{2}\)
=> Đpcm
***tik mik nhé***
Ta có :
3M=1+2/3+3/3^2+...+100/3^99
Suy ra :
2M=1+(1/3+1/3^2+1/3^3+...+1/3^99)-100/3^100
Xét B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
2B=1-\(\dfrac{1}{3^{99}}\)<1/2
Suy ra : 2M<1+1/2 nên M<3/4
\(A=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\\ 3A=1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\\ 3A-A=\left(1+\dfrac{2}{3}+\dfrac{3}{3^2}+...+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+...+\dfrac{100}{3^{100}}\right)\\ 2A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)
\(6A=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\\ 6A-2A=\left(3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\\ 4A=3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}\\ A=\dfrac{3-\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}}{4}=\dfrac{3}{4}-\dfrac{\dfrac{101}{3^{99}}}{4}-\dfrac{\dfrac{100}{3^{100}}}{4}< \dfrac{3}{4}\)
Vậy ...
Cho \(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\). Chứng minh A < 2.
\(2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+...+\dfrac{100}{2^{99}}\)
=> \(2A-A=A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+....+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)
Đặt \(B=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}\)
=> \(2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{98}}\)
=> \(B=\dfrac{1}{2^2}-\dfrac{1}{2^{99}}\)
=> \(A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{100}{2^{100}}-\dfrac{1}{2^{99}}\)
=> \(A=2-\dfrac{102}{2^{100}}< 2\)
Lời giải:
$M=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+....+\frac{100}{3^{100}}$
$3M=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}$
$\Rightarrow 2M=3M-M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}$
$2M+\frac{100}{3^{100}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$
$3(2M+\frac{100}{3^{100}})=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}
$\Rightarrow 2(2M+\frac{100}{3^{100}})=3(2M+\frac{100}{3^{100}})-(2M+\frac{100}{3^{100}})=2-\frac{1}{3^{99}}$
$M=\frac{1}{2}-\frac{1}{4.3^{99}}-\frac{50}{3^{100}}<\frac{1}{2}< \frac{3}{4}$
Ta có đpcm.