K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

 sao ngu VL

21 tháng 2 2020

nói bậy bạn ơi chưa khi nào đọc nội quy à

18 tháng 3 2020

Câu hỏi này mà là linh tinh hả bạn( è)

14 tháng 2 2022

a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:

\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\)  => ABE=ACF

 => 180-ABE=180-ACF    =>ABG=HCA

Xét tam giác AGB và tam giác HAC có:

AB=HC (gt)

ABG=HCA (CMT)

GB=AC (gt)

=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)

=>AG=HA (hai góc tương ứng )  => Tam giác AGH cân tại A (1)

=> GAB=AHC (hai góc tương ứng)

Xét tam giác AFH vuông tại F có :

FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )

=> FAH+GAB=90 (vì GAB=AHC cmt)

=>GAH=90  (2)  Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)

b) 1)Theo a, có: Tam giác AGB= Tam giác HAC

=> AG=HA ( hai cạnh tương ứng)

=> Tam giác AGH cân tại A

Mà M là trung điểm của GH   => AM là trung tuyến đồng thời là đường cao 

=> AM vuông góc với GH 

=> AMN=90    =>Tam giác MIN vuông tại M

=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)

=>MNI=180-90-MIN=90-MIN (1)

Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I

Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này

=> AKN=90   => Tam giác AKI vuông tại K

=> IAK+AKI+AIK=180

=>IAK=180-90-AIK=90-AIK (2)

Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK

Mà MIN và AIK đối đỉnh => MNI=IAK   =>BNG=OAM (ĐPCM)

2) Ta có AB < AC mà AC = BG                             

=> AB < BG                                                           

=>AGB < GAB mà AGB = HAC (câu a)                     

=>HAC < GAB (1)

Tam giác AGH cân tại A, đường trung tuyến AM       

=> GAM = HAM (2).

Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)

 

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng \(a, \frac {AB+AC}{2}\)\(b,BE+CF < \frac{3}{2}BC\)\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CNBài 3 . Cho tam giác ABC , góc B = 450 , đường cao AH ,...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 đường trung tuyến AD , BE , CF cắt nhau tại G . Chứng minh rằng 

\(a, \frac {AB+AC}{2}\)

\(b,BE+CF < \frac{3}{2}BC\)

\(c, \frac{3}{4}(AB+BC+AC)<AD+BE+CF<AB+BC+AC\)

Bài 2 : Cho tam giác ABC , tia phân giác góc B , C cắt nhau tại O . Từ A vẽ một đường thẳng vuông góc với OA , cắt OB , OC tại M,N . Chứng minh : BM vuông góc với BN . CM vuông góc với CN

Bài 3 . Cho tam giác ABC , góc B = 45, đường cao AH , phân giác BD của tam giác ABC , biết góc BDA = 450 . Chứng minh HD//AB 

Bài 4 . Cho tam giác ABC không vuông , các đường trung trực của AB , AC cắt nhau tại O , cắt BC theo thứ tự M,N . Chứng minh AO là phân giác của góc MAN .

Bài 5 : Cho tam giác ABC nhọn , đường cao BD , CE cắt nhau tại H . Lấy K sao cho AB là trung trực của HK . Chứng minh góc KAB = góc KCB 

0
1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0