Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$B=(2a-3)(2a+3)-a(3+4a)+3a+1$
$=(2a)^2-3^2-3a-4a^2+3a+1$
$=4a^2-9-3a-4a^2+3a+1=-8$ không phụ thuộc vào giá trị của biến
Ta có đpcm
1
C = ( 2a - 2 ) (2a + 2 ) - a ( 3 + 4a ) + 3a + 1
C = 4a2 - 4 - 3a - 4a2 + 3a + 1
C = -3 ko phụ thuộc của x
2. ( x + 3 ) ( x - 1 ) - x ( x - 5 ) = 11
( x2 + 3x - x - 3 ) - x2 + 5x = 11
7x = 14
x = 2
\(C=\left(2a-2\right)\left(2a+3\right)-a\left(3+4a\right)+3a+1\)
\(\Leftrightarrow C=2a\left(2a-2\right)+3\left(2a-2\right)-3a-4a^2+3a+1\)
\(\Leftrightarrow C=4a^2-4a+6a-6-3a-4a^2+3a+1\)
\(\Leftrightarrow C=\left(4a^2-4a^2\right)+\left(3a-3a\right)+\left(6a-4a\right)+\left(1-6\right)\)
\(\Leftrightarrow C=0+0+2a-5\)
\(\Leftrightarrow C=2a-5\)
Vậy giá trị của C phụ thuộc vào giá trị của biến
Theo bài ra , ta có :
\(3a+2b-c-d=1\)
\(2a+2b-c-2d=2\)
\(4a-2b-3c+d=3\)
\(8a+b-6c+d=4\)(1)
Cộng từng vế của 3 biểu thức đầu lại ta đk \(3a+2b-c-d+2a+2b-c-2d+4a-2b-3c+d=1+2+3\)
\(\Leftrightarrow9a+2b-5c+2d=6\)(2)
Trừ phương trình (2) cho phương trình (1) theo từng vế ta đk
\(9a+2b-5c+2d-8a-b+6c-d=6-4=2\)
\(\Leftrightarrow a+b+c+d=2\)
Vậy \(a+b+c+d=2\)
Chúc bạn học tốt =))
a) Thu gọn B = -8; b) Thu gọn C = 2018.