Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM bđt phụ nhá: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) \(\left(n\inℕ^∗\right)\)
\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(\left(n+1\right)\sqrt{n}-n\sqrt{n+1}\right)\left(\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\right)}\)
\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}\)
\(VT=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(VT=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)
\(VT=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=VP\)
Áp dụng vào A ta có :
\(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{399\sqrt{400}+400\sqrt{399}}\) ( olm bị lỗi nên ko dám viết nhìu )
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(A=1-\frac{1}{20}=\frac{19}{20}\)
Vậy \(A=\frac{19}{20}\)
Chúc bạn học tốt ~
a)\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2.n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b)\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\( S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
\(a,\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}\left(n+1-n\right)}\)
\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}=\frac{\sqrt{n-1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Ta có:
\(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\text{ Vì thế, }A=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...-\frac{1}{\sqrt{401}}< 1.\)
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Vậy S = 19/20
Xét phân thức phụ sau:
Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\frac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\frac{1}{\sqrt{n\left(n+1\right)}}\cdot\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thay vào ta được:
\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(BT=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Đặt biểu thức đã cho là A
Tổng quát ta có: Với \(a\inℕ^∗\)ta có:
\(\frac{1}{\left(a+1\right)\sqrt{a}+a.\sqrt{a+1}}=\frac{\left(a+1\right)-a}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}\)
\(=\frac{\left(\sqrt{a+1}-\sqrt{a}\right)\left(\sqrt{a+1}+\sqrt{a}\right)}{\sqrt{a}.\sqrt{a+1}.\left(\sqrt{a}+\sqrt{a+1}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}\)
\(=\frac{\sqrt{a+1}}{\sqrt{a}.\sqrt{a+1}}-\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a+1}}=\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{a+1}}\)
Áp dụng kết quả trên ta có:
Với \(n=1\)\(\Rightarrow\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Với \(n=2\)\(\Rightarrow\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
Với \(n=3\)\(\Rightarrow\frac{1}{4\sqrt{3}+3\sqrt{4}}=\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\)
.....................
Với \(n=399\)\(\Rightarrow\frac{1}{400\sqrt{399}+399\sqrt{400}}=\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+......+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)