K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

\(\widehat{HBA}\) chung

Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)

=>\(BH\cdot BC=BA^2\)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE~ΔACB

27 tháng 7

đéo

 

7 tháng 4 2020

b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7

7 tháng 4 2020

a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC

=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)

b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm

c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm

a: BC=căn 6^2+8^2=10cm

BH=AB^2/BC=3,6cm

CH=10-3,6=6,4cm

sin ABC=AC/BC=4/5

=>góc ABC=53 độ

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

c: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

góc KAC+góc AFE

=góc AHE+góc KCA

=góc ABC+góc ACB=90 độ

=>AK vuông góc EF

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)a.Tính BC,AH,BI,CIb.Chứng minh tam giác ABC và tam giác HAC đồng dạngc.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông câne.Phân giác của góc ACB cắt HN ở E, phân giác của góc...
Đọc tiếp

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)

a.Tính BC,AH,BI,CI

b.Chứng minh tam giác ABC và tam giác HAC đồng dạng

c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.

d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân

e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN

f.Chứng minh:BF.EC=AF. AE

2 , 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.

a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.

b)Chứng minh tam giác AEF đồng dạng với tam giác DBF. 

3 . 

Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.

a.Tính BC, AH?

b.Chứng minh tam giác EBF đồng dạng với tam giác EDC

c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD

d.Chứng minh BD vuông góc với CF

e.Tính tỉ số diện tích của 2 tam giác ABC và BCD 

giải phương trình : x^2 - 2x -3=-4

0
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)a.Tính BC,AH,BI,CIb.Chứng minh tam giác ABC và tam giác HAC đồng dạngc.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông câne.Phân giác của góc ACB cắt HN ở E, phân giác của góc...
Đọc tiếp

1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)

a.Tính BC,AH,BI,CI

b.Chứng minh tam giác ABC và tam giác HAC đồng dạng

c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.

d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân

e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN

f.Chứng minh:BF.EC=AF. AE

2 , 

Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.

a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.

b)Chứng minh tam giác AEF đồng dạng với tam giác DBF. 

3 . 

Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.

a.Tính BC, AH?

b.Chứng minh tam giác EBF đồng dạng với tam giác EDC

c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD

d.Chứng minh BD vuông góc với CF

e.Tính tỉ số diện tích của 2 tam giác ABC và BCD 

giải phương trình : x^2 - 2x -3=-4

0
17 tháng 6 2016

Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.

A B C H E F

a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.

\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)

b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)

c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).

1 tháng 7 2022

Cô giải kĩ lại phần c đc ko ạ? Yếu tố cạnh nào vậy ạ?

19 tháng 6 2016
  1. Ap dung dinh ly pitago dao vao tam giac ABC ta co AB2+AC2=52+122=169=132 . ma BC2=132
  • =>AB2+AC2=BC2=>Tam giac ABC vuong tai A
  • Ke duong cao AH .Ap dung ti so luong giac vao tam giac vuong ABC ta co \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)\(\frac{1}{AC^2}\)=>\(\frac{1}{AH^2}\)\(\frac{1}{5^2}\)\(\frac{1}{12^2}\)=>AH=\(\frac{60}{13}\)

3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC                                                                     2.=>\(\frac{AB}{AF}\)\(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC