K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

Giả sử phản chứng n ko chia hết cho 5 

=> n có dạng là 5a + 1; 5b + 2; 5c + 3; 5d + 4

TH1:   n = 5a + 1

=>   \(n^2=\left(5a+1\right)^2=25a^2+10a+1\)     ko chia hết cho 5

TH2:   n = 5b + 2

=>    \(n^2=\left(5b+2\right)^2=25b^2+20b+4\)    ko chia hết cho 5

TH3:   n = 5c + 3

=>   \(n^2=\left(5c+3\right)^2=25c^2+30c+9\)     ko chia hết cho 5

TH4:   n = 5d + 4

=>   \(n^2=\left(5d+4\right)^2=25d^2+40d+16\)  ko chia hết cho 5

VẬY QUA 4 TRƯỜNG HỢP THÌ TA THẤY ĐIỀU GIẢ SỬ LÀ SAI

=>    ĐIỀU PHẢI CHỨNG MINH:     \(n^2⋮5\Rightarrow n⋮5\)

23 tháng 8 2020

Giả sử n2 chia hết cho 5 và n không chia hết cho 5.

Nếu n=5k\(\pm\)\(\left(k\inℕ\right)\)thì \(n^2=25k^2\pm10k+1=5\left(5k^2\pm2k\right)+1⋮̸5\)

Nếu \(n=5k\pm2\left(k\inℕ\right)\)thì \(n^2=25k^2\pm20k+4=5\left(5k^2\pm4k\right)+4⋮̸5\)

Điều này mâu thuẫn với giả thiết n2 chia hết cho 5

20 tháng 11 2017

N lẻ nên  n có dạng : n = 2k+1 ( k thuộc N )

Khi đó n^2-1 = (2k+1)^2 - 1 = 4k^2+4k+1-1 = 4k^2+4k = 4k.(k+1)

Ta thấy : k ; k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => k.(k+1) chia hết cho 2

=> n^2-1 = 4.k.(k+1) chia hết cho 8

=> ĐPCM

k mk nha

25 tháng 9 2016

minh chi moi lop 7 nen chua biet nheiu, nhung minh se lam theo cach cua minh.

Neu sai thi co the it nhat se cho ban dc mot vai goi y de lam bai 9 ( trong truong hop ban ko bik

dat  n=abc...

neu n^2 chia het cho 3->n^2 co so nguyen to 3=>n co so nguyrn to 3 -> n co so nguyen to 3      (1)

neu n khong chia het cho 3 =>n ko co so nguyen to 3->n^2 ko co so nguyen to 3->n^2 ko chia het cho 3(2)

Vay n^2 chia het cho 3 thi n chia het cho 3

minh thay van sai sot rat nhieu va qua nhieu chu, day co the lam goi y thoi

4 tháng 12 2017

mk mới hk lớp 6 ko biết giải có đúng ko

Giả sử n không chia hết cho 3 => n có dạng 3k+1 hoặc 3k+2 (k thuộc N*)

+) Với n=3k+1 

=> n^2=(3k+1)^2=9.k^2+6k+1 không chia hết cho 3

+) Với n=3k+2

=> n^2=(3k+2)^2=9.k^2+12k+4 không chia hết cho 3

Vậy với n không chia hết cho 3 thì n^2 không chia hết cho 3

=> Với n^2 chia hết cho 3 thì n phải chia hết cho 3

6 tháng 10 2018

Giả sử a+b không chia hết cho 5

Suy ra:

\(\left(a+b\right)^5\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4\)không chia hết cho 5

\(\Leftrightarrow\left(a^5+b^5\right)+5\cdot A\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5\)không chia hết cho 5

Phản giả thiết

Vậy ......

Nếu không sử dụng phản chứng ta có thể chứng minh bằng pp khai triển giả thiết

\(a^5+b^5=\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)⋮5\)

Suy ra: \(\left(a+b\right)⋮5\)

Cũng có thể giải bằng quy nạp toán học

3 tháng 7 2018

Ta có : \(5^n⋮5,1995⋮5\)

nên \(5^n+1995⋮5\)(1)

Mặt khác : \(5^n+1995=\left(5^n-1\right)+1994\)

mà  \(5^n-1⋮4,1994⋮4\)

nên  \(\left(5^n-1\right)+1994⋮4\)

hay \(5^n+1995⋮4\)(2)

từ (1) và (2) \(\Rightarrow5^n+1995⋮20\)

cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau  Giải (copy) Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại) nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại) Vậy m,n là những số lẻ  Gọi (m,n) = d => m2- 2023n2 ⋮...
Đọc tiếp

cho m n là số tự nhiên thỏa mãn m2-2020n2+2022 chia hết cho m,n chứng minh rằng m,n là hai số lẻ và nguyên tố cùng nhau 

Giải (copy)

Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4 và mn chia hết cho 4 suy ra m2-2023n2+2022 không chia hết cho mn (loại)

nếu m,n khác tính chẵn lẻ thì m2- 2023n2+ 2022 lẻ và mn chẵn do đó m2-2023n2+2022 không chia hết cho mn (loại)

Vậy m,n là những số lẻ 

Gọi (m,n) = d => m2- 2023n⋮ d2 ; mn ⋮ d2  mà m2- 2023n+ 2022 ⋮ mn nên 2022 ⋮ d2 

Mặt khác 2022 = 2.3.337 tức 2022 không có ước chính phương nào ngoài 1 do đó d2 = 1 => d = 1 => (m,n) =1 vậy m,n là hai số nguyên tố cùng nhau .

 

 

Em chưa hiểu tai sao 

Nếu m,n là 2 số chẵn thì m2- 2023n2+ 2022 không chia hết cho 4

thầy Cao Lộc phân tích cho em với ạ

 

 

 

2
19 tháng 6 2023

Cặp \(m=2\) , \(n=1\) vẫn thỏa \(m^2-2020n^2+2022⋮mn\)

19 tháng 6 2023

Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:

Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.

Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.

Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:

(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn

Simplifying the equation, we get:

4k^2 - 2020n^2 + 2022 chia hết cho 2kn

Dividing both sides by 2, we have:

2k^2 - 1010n^2 + 1011 chia hết cho kn

Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.

Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.

Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.

Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.

Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.

Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.

Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:

m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)

Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).

Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).

Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.

Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.

10 tháng 12 2015

Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :

\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)

4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).

Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.