K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2021

Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\sqrt{\dfrac{2c}{a+b}}\)

\(=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{2c}{\sqrt{2c\left(a+b\right)}}\)

\(\ge\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{4c}{a+b+2c}=\dfrac{\left(a-b\right)^2\left(a+b+c\right)}{\left(b+c\right)\left(c+a\right)\left(a+b+2c\right)}\ge0\)

(đúng hiển nhiên)

Đẳng thức xảy ra khi $a=b=c.$

AH
Akai Haruma
Giáo viên
18 tháng 1 2021

Em xem lại đoạn:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{4c}{a+b+2c}=\frac{(a-b)^2(a+b+c)}{(b+c)(c+a)(a+b+2c)}\) bị nhầm rồi nè. 

8 tháng 12 2017

Mình làm được rồi, cảm ơn các bạn vui

30 tháng 12 2022

1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)

4 tháng 2 2021

Chỗ kia là có thêm dấu + nữa nha

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

Điều kiện \(ab+bc+ac=abc\) là không cần thiết và bạn cần sửa lại đề bài là: CMR \(\sqrt{\frac{b^2+2a^2}{ab}}+\sqrt{\frac{c^2+2b^2}{bc}}+\sqrt{\frac{a^2+2c^2}{ac}}\geq 3\sqrt{3}\)

--------------------------

Áp dụng BĐT AM-GM ta có:

\(b^2+2a^2=b^2+a^2+a^2\geq 3\sqrt[3]{b^2a^4}\)

\(\Rightarrow \frac{b^2+2a^2}{ab}\geq \frac{3\sqrt[3]{b^2a^4}}{ab}=3\sqrt[3]{\frac{a}{b}}\)

\(\Rightarrow \sqrt{\frac{b^2+2a^2}{ab}}\geq \sqrt{3}.\sqrt[6]{\frac{a}{b}}\)

Hoàn toàn TT: \(\sqrt{\frac{c^2+2b^2}{bc}}\geq \sqrt{3}.\sqrt[6]{\frac{b}{c}}; \sqrt{\frac{a^2+2c^2}{ac}}\geq \sqrt{3}.\sqrt[6]{\frac{c}{a}}\)

Cộng theo vế những BĐT vừa thu được:

\(\Rightarrow \text{VT}\geq \sqrt{3}\left(\sqrt[6]{\frac{a}{b}}+\sqrt[6]{\frac{b}{c}}+\sqrt[6]{\frac{c}{a}}\right)\)

\(\geq \sqrt{3}.3\sqrt[18]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\sqrt{3}\) (tiếp tục áp dụng BĐT AM-GM)

Vậy ta có đpcm

Dấu "=" xảy ra khi $a=b=c$