K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7

\(\left(x+y\right)^2+\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\\ =\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)+\left(x^2-y^2\right)\\ =x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2\\ =3x^2+y^2\)

Ta có: \(\left\{{}\begin{matrix}3x^2\ge0\forall x\\y^2\ge0\forall y\end{matrix}\right.=>3x^2+y^2\ge0\forall x,y\)

=> Biểu thức không âm với mọi x và y 

29 tháng 7

`(x+y)^2 + (x - y)^2 + (x+y)(x - y)`

`= x^2 + 2xy + y^2 + x^2 - 2xy + y^2 + x^2 - y^2`

`= 3x^2 + y^2`

Ta có: \(\left\{{}\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x^2\ge0\\y^2\ge0\end{matrix}\right.\)

`=> 3x^2 + y^2 ≥ 0`

Vậy đa thức trên luôn không âm với mọi `x;y`

17 tháng 10 2017

\(x^2-xy+y^2=x^2-2.x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2+\frac{3y^2}{4}\)\(=\left(x-\frac{1}{2}y\right)^2+\frac{3y^2}{4}\ge0\) với mọi x,y.

25 tháng 10 2018

\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)

\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)

\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)