K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

Cm: a) Ta có: BA ⊥⊥AC (gt)

                        HD // AB (gt)

=> HD ⊥⊥AC => ˆHDA=900HDA^=900

Ta lại có: AC ⊥⊥AB (gt)

   HE // AC (gt)

=> HE ⊥⊥AB => ˆHEA=900HEA^=900

Xét tứ giác AEHD có: ˆA=ˆAEH=ˆHDA=900A^=AEH^=HDA^=900

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => ˆOAD=ˆODAOAD^=ODA^ (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => ˆMAC=ˆCMAC^=C^

Ta có: ˆB+ˆC=900B^+C^=900 (phụ nhau)

  ˆC+ˆHAC=900C^+HAC^=900 (phụ nhau)

=> ˆB=ˆHACB^=HAC^ hay ˆB=ˆOADB^=OAD^ (2) 
Từ (1) và (2) => ˆODA=ˆBODA^=B^

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: ˆIAD+ˆIDA+ˆAID=1800IAD^+IDA^+AID^=1800 (tổng 3 góc của 1 t/giác)

=> ˆAID=1800−(IAD+ˆIDA)AID^=1800−(IAD+IDA^)

hay ˆAID=1800−(ˆB+ˆC)=1800−900=900AID^=1800−(B^+C^)=1800−900=900

=> AM⊥DEAM⊥DE(Đpcm)

c) (thiếu đề)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

b: XétΔABC vuông tại A có AH là đường cao

nên \(AH^2=BH\cdot CH\)

c: Vì \(AH^2=BH\cdot CH=4\cdot16=64\left(cm\right)\)

nên AH=8cm

Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE=8(cm)

27 tháng 1 2022

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^BHA = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

b, Xét tam giác ABH và tam giác CAH ta có : 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAC ) 

Vậy tam giác ABH~ tam giác CAH (g.g )

=> AH/CH=BH/AH => AH^2 = CH.BH 

c, Ta có : AH = 2 . 4 = 8 cm 

Xét tứ giác ADHE có : 

^A = ^ADH = ^AEH = 900 

Vậy tứ giác ADHE là hcn 

=> AH = DE = 8 cm 

d, Ta có : \(\dfrac{S_{AMH}}{S_{ABC}}=\left(\dfrac{AH}{AC}\right)^2\)

Xét tam giác AHC và tam giác ABC 

^AHC = ^BAC = 900

^HAC = ^B ( cùng phụ ^BAM ) 

Vậy tam giác AHC ~ tam giác BAC ( g.g)

=> AC / BC = HC/AC => AC^2 = HC ( HB + HC ) 

=> AC = 4 . 5 = 20 cm 

Thay vào ta được : \(\left(\dfrac{AH}{AC}\right)^2=\left(\dfrac{8}{20}\right)^2=\dfrac{64}{400}=\dfrac{4}{25}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

DO đó:ΔABC\(\sim\)ΔHBA

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

c: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó:ADHE là hình chữ nhật

Suy ra: AH=DE

mà \(AH=\sqrt{4\cdot16}=8\left(cm\right)\)

nên DE=8cm

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.

11 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

=>ADHE là hình chữ nhật

b: Vì ADHE là hình chữ nhật

nên AH=DE(1)

Xét ΔAHM vuông tại H có AM là cạnh huyền

nên AH<=AM(2)

Từ (1) và (2) suy ra DE<=AM

Dấu '=' xảy ra khi H trùng với M

c: AEHD là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{ACB}\right)\)

nên \(\widehat{AED}=\widehat{B}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB

Ta có: MA=MC

=>ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}\)

\(=90^0\)

=>DE\(\perp\)AM

 

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{AEH}=\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật