K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\widehat{OMN}=\widehat{MQP}\)(hai góc đồng vị, MN//PQ)

\(\widehat{ONM}=\widehat{NPQ}\)(hai góc đồng vị, MN//PQ)

mà \(\widehat{MQP}=\widehat{NPQ}\)(MNPQ là hình thang cân)

nên \(\widehat{OMN}=\widehat{ONM}\)

=>ΔOMN cân tại O

b: Xét ΔMNQ và ΔNMP có

NM chung

NQ=MP

MQ=NP

Do đó: ΔMNQ=ΔNMP

c: H ở đâu vậy bạn?

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

a) Xét tam giác $EDM$ và $EKQ$ có:

$\widehat{E}$ chung

$\widehat{EDM}=\widehat{EKQ}$ (hai góc đồng vị)

$\Rightarrow \triangle EDM\sim \triangle EKQ$ (g.g)

b) 

$MD\parallel QK$ nên theo định lý Talet:

$\frac{EM}{EQ}=\frac{ED}{EK}\Rightarrow EM.EK=EQ.ED$

 

31 tháng 10 2021

a: Xét ΔABC có

\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)

Do đó: MN//BC

Xét tứ giác BNMC có MN//BC

nên BNMC là hình thang

mà \(\widehat{NBC}=\widehat{MCB}\)

nên BMNC là hình thang cân

31 tháng 10 2021

Mk cảm ơn nhiều nhưng còn các câu còn lại giúp mk vs ạ