Chứng minh các đẳng thức sau:

 ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

b. Xét vế trái \(\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(=a^2x^2-2axby+b^2y^2+a^2y^2+2aybx+b^2x^2\)

\(=\left(ax-by\right)^2+\left(ay+bx\right)^2\)(đpcm)

28 tháng 8 2021

c. Xét vế trái \(a^3-b^3+ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+2ab+b^2\right)\)

\(=\left(a-b\right)\left(a+b\right)^2\)(đpcm)

29 tháng 7 2021

Bài 209 : đăng tách ra cho mn cùng làm nhé 

a,sửa đề :  \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)

b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)

c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)

\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)

9 tháng 10 2020

Câu 1: \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4+b^4+c^4-2a^2b^2-2c^2a^2+2b^2c^2\right)-4b^2c^2=\left(a^2-b^2-c^2\right)^2-4b^2c^2=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)Câu 2: \(a^3+a^2-ab^2-b^2=a^2\left(a+1\right)-b^2\left(a+1\right)=\left(a^2-b^2\right)\left(a+1\right)=\left(a+b\right)\left(a-b\right)\left(a+1\right)\)

Câu 3: \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=a\left(b^3-c^3\right)-b\left[\left(b^3-c^3\right)+\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(b-c\right)\left[b\left(c-a\right)+\left(c-a\right)\left(c+a\right)\right]=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

9 tháng 10 2020

Câu 1.

a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 

= [ ( a4 - 2a2b2 + b4 ) - 2a2c2 + 2b2c2  + c4 ] - 4b2c2

= [ ( a2 - b2 )2 - 2( a2 - b2 )c2 + ( c2 )2 ] - ( 2bc )2

= ( a2 - b2 - c2 ) - ( 2bc )2

= ( a2 - b2 - c2 - 2bc )( a2 - b2 - c2 + 2bc )

= [ a2 - ( b2 + 2bc + c2 ) ][ a2 - ( b2 - 2bc + c2 ) ]

= [ a2 - ( b + c )2 ][ a2 - ( b - c )2 ]

= ( a - b - c )( a + b + c )( a - b + c )( a + b - c )

Câu 2.

a3 + a2 - ab2 - b2

= a2( a + 1 ) - b2( a + 1 )

= ( a + 1 )( a2 - b2 )

= ( a + 1 )( a - b )( a + b )

15 tháng 9 2019

\(A=2^3-3.2^2.x+3.2.x^2-x^3\)

\(A=\left(2-x\right)^3\)

\(B=\left(2x\right)^3-2.\left(2x\right)^2.y+3.2x.y^2-y^3\)

\(B=\left(2x-y\right)^3\)

7 tháng 3 2017

Tam giác Pascal

7 tháng 3 2017

pascal là gì ạ

9 tháng 6 2017

Ta có :

\(a+b+c\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\)\(=a^3+3a^2b+3ab^2+b^3+c^3=0\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)\(=a^3+b^3+c^3=-3ab.-c\)

\(=a^3+b^3+c^3=3abc\Rightarrowđpcm\)

9 tháng 6 2017

Ta cm \(a^3+b^3+c^3=3abc\) là đúng khi \(a+b+c=0\)

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\) \(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\) \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\) \(\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\) \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)(điều này đúng vì a+b+c=0)

\(\Rightarrow\) \(a^3+b^3+c^3=3abc\)