K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu a:

\(a+b+c=0\Rightarrow a=-b-c\)

\(\Rightarrow a^2-b^2-c^2=(-b-c)^2-b^2-c^2=(b+c)^2-b^2-c^2\)

\(=2bc\)

\(\Rightarrow \frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{2bc}\). Hoàn toàn tương tự với những phân thức còn lại:

\(\Rightarrow M=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Lại có:

\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3\)

\(=-c^3+3abc+c^3=3abc\)

\(\Rightarrow M=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy giá trị của biểu thức M không phụ thuộc vào biến $a,b,c$

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Câu b:

Thay $2005=abc$ ta có:

\(N=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)

\(=\frac{ab.ac}{ab(1+ac+c)}+\frac{b}{b(c+1+ac)}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{1+ac+c}=1\)

Vậy giá trị của biểu thức $N$ không phụ thuộc vào giá trị biến $a,b,c$

(đpcm)

5 tháng 7 2017

Bài 2:

Bài 1:

\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)

12 tháng 5 2017

a) Áp dụng bất đẳng thức Schur với \(r=1\)

\(\Rightarrow a^3+b^3+c^3+3abc\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

\(\Rightarrow3abc\ge a^2b+ca^2-a^3+ab^2+b^2c-b^3+c^2a+bc^2-c^3\)

\(\Rightarrow3abc\ge a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

b) Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{a^3}{b^2}+b+b\ge3\sqrt[3]{\dfrac{a^3}{b^2}.b^2}=3a\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{b^3}{c^2}+c+c\ge3b\\\dfrac{c^3}{a^2}+a+a\ge3c\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}+2\left(a+b+c\right)\ge3\left(a+b+c\right)\)

\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

c) Ta có \(abc=ab+bc+ca\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\dfrac{1}{a+2b+3c}=\dfrac{1}{a+c+2\left(b+c\right)}\le\dfrac{1}{4}\left[\dfrac{1}{a+c}+\dfrac{1}{2\left(b+c\right)}\right]\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+2c+3a}\le\dfrac{1}{4}\left[\dfrac{1}{a+b}+\dfrac{1}{2\left(a+c\right)}\right]\\\dfrac{1}{c+2a+3b}\le\dfrac{1}{4}\left[\dfrac{1}{b+c}+\dfrac{1}{2\left(a+b\right)}\right]\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left[\dfrac{3}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\right]\)

\(\Rightarrow VT\le\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\) ( 1 )

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\right]\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{16}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow VT\le\dfrac{3}{16}\)

\(\Rightarrow\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{3}{16}\) ( đpcm )

12 tháng 5 2017

mk hỏi lâu rồi bây giờ bạn mới trả lời thì có đc GP k nhỉ

10 tháng 8 2023

tử vế phải là 3 hay 2 vậy bạn.

26 tháng 4 2022

-Mình thử trình bày cách làm của mình nhé, bạn xem thử có gì sai sót không hoặc chỗ nào bạn không hiểu thì hỏi mình nhé.

26 tháng 4 2022

-Thôi, mình chịu rồi. Mình dùng tất cả các BĐT như Caushy, Schwarz, Caushy 3 số... nhưng không ra.

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)