K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Xét hàm số y = f(x) = tanx – x với x ∈ [0 ; ).

Ta có : y’ = - 1 ≥ 0, x ∈ [0 ; ); y’ = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ).

Từ đó ∀x ∈ (0 ; ) thì f(x) > f(0) ⇔ tanx – x > tan0 – 0 = 0 hay tanx > x.

b) Xét hàm số y = g(x) = tanx – x - . với x ∈ [0 ; ).

Ta có : y’ = - 1 - x2 = 1 + tan2x - 1 - x2 = tan2x - x2

= (tanx - x)(tanx + x), ∀x ∈ [0 ; ).

Vì ∀x ∈ [0 ; ) nên tanx + x ≥ 0 và tanx - x >0 (theo câu a).

Do đó y' ≥ 0, ∀x ∈ [0 ; ).

Dễ thấy y' = 0 ⇔ x = 0. Vậy hàm số luôn đồng biến trên [0 ; ). Từ đó : ∀x ∈ [0 ; ) thì g(x) > g(0) ⇔ tanx – x - > tan0 - 0 - 0 = 0 hay tanx > x + .

26 tháng 5 2017

VD1 : tanx≤4xπ∀x∈[0;π4]tanx≤4xπ∀x∈[0;π4]

Xét f(x)=tanx−4xπf(x)=tanx−4xπ

f′(x)=tan2x+1−4πf′(x)=tan2x+1−4π

f′′(x)=2tanx.1cos2x>0∀x∈[0;π4]f″(x)=2tanx.1cos2x>0∀x∈[0;π4]

Suy ra pt f′(x)=0f′(x)=0 có không quá 1 nghiệm thuộc [0;π4][0;π4]

Do đó f(x) đạt giá trị lớn nhất tại cực biên là khi x=0x=0 hoặc x=π4x=π4.

thay vào ta có max[0;π/4]f(x)=0max[0;π/4]f(x)=0

f(x)≤0⇔tanx≤4xπ∀x∈[0;π4]

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm sốỨng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

g'(x) là đạo hàm của g(x) phải không bạn? Xét đạo hàm tới 2 lần lận à?

10 tháng 7 2017

a) Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0; π/2);

Giải sách bài tập Toán 12 | Giải sbt Toán 12

x ∈ [0;1/2)

Dấu “=” xảy ra khi x = 0.

Suy ra f(x) đồng biến trên nửa khoảng [0; π/2)

Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x ∈ [0; 1/2)

b) Xét hàm số h(x) trên [0; + ∞ )

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Dấu “=” xẩy ra chỉ tại x = 0 nên h(x) đồng biến trên nửa khoảng [0;  + ∞ ).

Vì h(x) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét hàm số trên f(x) trên [0;  + ∞ );

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì g(0) = 0 và g(x) đồng biến trên nửa khoảng [0;  + ∞ ) nên g(x) ≥ 0, tức là f′(x) ≥ 0 trên khoảng đó và vì dấu “=” xảy ra chỉ tại x = 0 nên f(x) đồng biến trên nửa khoảng .

Mặt khác, ta có f(0) = 0 nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với mọi 0 < x <  + ∞ .

AH
Akai Haruma
Giáo viên
5 tháng 7 2017

Lời giải:

BPT cần chứng minh tương đương \(2\sin x+\tan x-3x>0\)

Xét hàm \(f(x)=2\sin x+\tan x-3x\rightarrow f'(x)=2\cos x+\frac{1}{\cos^2 x}-3\)

Đặt \(\cos x=t\Rightarrow t\in (0;1)\)

Ta có \(f'(x)=2t+\frac{1}{t^2}-3=\frac{(t-1)(2t^2-t-1)}{t^2}>0\forall t\in (0;1)\)

Do đó \(f(x)\) luôn đồng biến với mọi \(x\in \left (0;\frac{\pi}{2}\right)\)

\(\Rightarrow f(x)>f(0)=0\). Ta có đpcm.

10 tháng 7 2017

cảm ơn bạn nhiều

27 tháng 10 2017

Xét hàm số f(x) = tanx − sinx trên nửa khoảng [0;  π /2);

Giải sách bài tập Toán 12 | Giải sbt Toán 12

x ∈ [0;1/2)

Dấu “=” xảy ra khi x = 0.

Suy ra f(x) đồng biến trên nửa khoảng [0;  π /2)

Mặt khác, ta có f(0) = 0, nên f(x) = tanx – sinx > 0 hay tanx > sinx với mọi x  ∈  [0; 1/2)

3 tháng 3 2019

Xét hàm số y = f(x) = tanx – x trên khoảng (0; π/2)

Ta có: y’ = Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12 > 0 với ∀ x ∈ R.

⇒ hàm số đồng biến trên khoảng (0; π/2)

⇒ f(x) > f(0) = 0 với ∀ x > 0

hay tan x – x > 0 với ∀ x ∈ (0; π/2)

⇔ tan x > x với ∀ x ∈ (0; π/2) (đpcm).

3 tháng 8 2018

Xét hàm số y = g(x) = tanx - x - Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12 trên Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Theo kết quả câu a): tanx > x ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ g'(x) > 0 ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = g'(x) đồng biến trên Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

⇒ g(x) > g(0) = 0 với ∀ x ∈ Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 5 trang 10 sgk Giải tích 12 | Để học tốt Toán 12