Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow a^2+b^2+1-ab+a+b\ge0\)
\(\Leftrightarrow2a^2+2b^2+2-2ab+2a+2b\ge0\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)+\left(a^2+2a+1\right)+\left(b^2+2b+1\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra \(\Leftrightarrow a=b=-1\)
2/ \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
Áp dụng bđt cosi : \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\frac{1}{a}.\frac{1}{b}}=4\)(ĐPCM)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
3/ \(\frac{a^2+a+1}{a^2-a+1}>0\)
Vì \(\hept{\begin{cases}a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\\a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\Leftrightarrow\frac{a^2+a+1}{a^2-a+1}>0\)(ĐPCM)
1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)
Dấu '=' xảy ra khi \(a=b=1\)
2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)
Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)
Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)
Dấu "=" xảy ra khi a = b = c = 1
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)