Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976
= [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976
= ( x- y - 6 )2 + 5 (y-1)2 + 1976
Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0
Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y
Q=x2+6y2−2xy−12x+2y+2017
Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976
=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976
=[(x-y)2-12(x-y)+36]+5(y-1)2+1976
=(x-y-6)2+5(y-1)2+1976
do (x-y-6)2 ≥ 0 ∀ x,y
(y-1)2 ≥ 0 ∀ y
=> (x-y-6)2+5(y-1)2+1976 ≥ 1976
=> Q≥ 1976
=> MinA=1976 khi
y-1=0
=>y=1
x-y-6=0
=>x-1-6=0
=>x-7=0
=>x=7
Vậy GTNN của Q =1976 khi x=7 và y=1
a, Ta có: 4x2-2x+1 = (x2 -2x+1)+ 3x2=(x-1)2 +3x2>0 (thay x=1 và x=0 thì biểu thức vãn lớn hơn 0)
b, x4-3x2+9=x4- 6x2 +32 +3x2=(x2-3)2 +3x2 >0
c, x2+y2-2x-2y+2xy+2=(x+y)2 -1 -2(x+y-1) +1 =(x+y -1)(x+y+1) - 2(x+y-1)+1=(x+y-1)(x+y+1-2) + 1=(x+y-1)2 +1 >0
d, 2(x2+3xy+3y2)=2x2+6xy+6y2=(x2+2xy+y2) +(x2+4xy+4y2)+y2=(x+y)2+(x+2y)2+y2>0
e, 2x2+y2+2x(y-1)+2= (x2+2xy+y2) +(x2-2x+1)+1=(x+y)2+(x-1)+1>0
nhớ bấm đúng cho mình nhé!
Q=x2 - 2xy + y2 - 12x + 12y + 36 + 5y2 + 10y + 5 + 1976
Q=(x - y)2 - 2.(x - y).6 + 62 + 5(y2 + 2y + 1) + 1976
Q=(x - y - 6)2 +5.(y + 1)2 + 1976 (≥ 1976 > 0 ∀ x,y ∈ R)
Vậy biểu thức Q luôn nhận giá trị dương với mọi số thực x,y
a) \(x^2 +x +1 = x^2 +x +1/4 +3/4 = (x+1/2)^2 +3/4\)
các câu khác dùng phương pháp tương tự
a) x^2 + x +1 = x^2 + x + 1/4 + 3/4 = ( x+ 1/2)^2 + 3/4
Vì (x+1/2)^2 >= 0 => (x+1/2)^2 + 3/4>=3/4 > 0
b) 4x^2 - 2x + 1 = (2x)^2 - 2x + 1/4 + 3/4 = (2x +1/2)^2 + 3/4
Vì (2x +1/2)^2 >=0 => (2x +1/2)^2 + 3/4 >= 3/4 > 0
c) x^4 -3x^2 + 9 = x^4 - 3x^2 + 9/4 + 25/4 = ( x^2+ 3/2)^2 + 9/4
Vì ( x^2+ 3/2)^2 >= 0 => ( x^2+ 3/2)^2 + 9/4 >=9/4 >0
d) x^2 + y^2 -2x-2y + 2xy +1
= ( x^2 + 2xy + y^2) - 2( x+y) +1
= ( x+y)^2 -2(x+y) +1
= (x +y +1)^2 >=0
g) x^2+y^2+2(x-2y)+6
= (x^2 + 2x +1) + (y^2 -4y+4) +1
= ( x+1)^2 + (y-2)^2 +1
Vì (x+1)^2; (y-2)^2 >= 0 => ( x+1)^2 + (y-2)^2 +1>=1>0
Câu 1: Sửa đề là
\(x^2+2x+4^n-2^{n+1}+2=0\)
\(\Rightarrow x^2+2x+2^{2n}-2^{n+1}+1+1=0\)
\(\Rightarrow\left(x^2+2x+1\right)+\left(2^{2n}-2^{n+1}+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+\left(2^{2n}-2.2^n+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2=0\)
Ta có:
\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(2^n-1\right)^2\ge0\end{matrix}\right.\forall x,n.\)
\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2\ge0\) \(\forall x,n.\)
\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(2^n-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+1=0\\2^n-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\2^n=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-1\\2^n=2^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\n=0\end{matrix}\right.\)
Vậy \(\left(x;n\right)\in\left\{-1;0\right\}.\)
Chúc bạn học tốt!
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1
=\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)
\(\Rightarrow\)A dương với mọi x,y
\(M=5x^2+2y^2+4xy-2x+4y+6\)
\(=\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\)
Do \(\left(2x+y\right)^2\ge0\forall x;y\left(x-1\right)^2\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)
\(\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\forall x;y\)
\(\Rightarrow M\ge1>0\forall x;y\)
\(\left(đpcm\right)\)
x2 + 2xy + 3y2 + 2x - 2y + 2016
= ( x2 + 2xy + y2 + 2x + 2y + 1 ) + ( 2y2 - 4y + 2 ) + 2013
= [ ( x2 + 2xy + y2 ) + ( 2x + 2y ) + 1 ] + 2( y2 - 2y + 1 ) + 2013
= [ ( x + y )2 + 2( x + y ) + 12 ] + 2( y - 1 )2 + 2013
= ( x + y + 1 )2 + 2( y - 1 )2 + 2013 ≥ 2013 > 0 ∀ x, y
=> đpcm