Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm của AC và BD
⇒ O là trung điểm của AC và BD
Xét ΔABC có AM và BO là trung tuyến
⇒ E là trọng tâm
=> BE=2OE
Tương tự ta có: DF=2OF
mà OD=OB (do O là trung điểm của BD)
=> BE=EF=DF
a: Gọi giao của AC và BD là O
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔADC có
AN,DO là trung tuyến
AN cắt DO tại F
Do đó: F là trọng tâm cuả ΔADC
Xét ΔABC có
AM,BO là trung tuyến
AM cắt BO tại E
Do đó: E là trọng tâm của ΔABC
b: E là trọng tâm của ΔABC
=>\(BE=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
F là trọng tâm của ΔDAC
=>\(DF=\dfrac{2}{3}DO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}\cdot BD\)
DF+FE+EB=DB
=>\(FE=DB-\dfrac{1}{3}DB-\dfrac{1}{3}DB=\dfrac{1}{3}DB\)
=>EB=EF=DF
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAK và ΔOCH có
\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)
OA=OC
\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)
Do đó: ΔOAK=ΔOCH
=>OK=OH
=>O là trung điểm của KH
Xét ΔOAE và ΔOCF có
\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
Do đó: ΔOAE=ΔOCF
=>OE=OF
=>O là trung điểm của EF
Xét tứ giác EKFH có
O là trung điểm chung của EF và KH
=>EKFH là hình bình hành
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔADC có
DO,AN là các đường trung tuyến
DO cắt AN tại F
Do đó: F là trọng tâm của ΔADC
=>\(DF=\dfrac{2}{3}DO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
Xét ΔABC có
AM,BO là các đường trung tuyến
AM cắt BO tại E
Do đó: E là trọng tâm của ΔABC
=>\(BE=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
Ta có: BE+EF+FD=BD
=>\(EF+\dfrac{1}{3}BD+\dfrac{1}{3}BD=BD\)
=>\(EF=BD-\dfrac{2}{3}BD=\dfrac{1}{3}BD\)
Do đó: BE=EF=FD