K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 7 2024

Lời giải:
Xét hiệu:

$x^4+y^4-xy(x^2+y^2)=(x^4-x^3y)-(xy^3-y^4)=x^3(x-y)-y^3(x-y)$

$=(x-y)(x^3-y^3)=(x-y)(x-y)(x^2+xy+y^2)=(x-y)^2(x^2+xy+y^2)$

Ta thấy:

$(x-y)^2\geq 0$ với mọi $x,y$

$x^2+xy+y^2=(x+\frac{y}{2})^2+\frac{3y^2}{4}\geq 0$ với mọi $x,y$

$\Rightarrow x^4+y^4-xy(x^2+y^2)=(x-y)^2(x^2+xy+y^2)\geq 0$

$\Rightarrow xy(x^2+y^2)\leq x^4+y^4$

Ta có đpcm
Dấu "=" xảy ra khi $x=y$.

9 tháng 3 2016

Ta có \(\left(2-x\right)\left(2-y\right)\left(2-z\right)>0\to8-4\left(x+y+z\right)+2\left(xy+yz+zx\right)-xyz>0\)
Suy ra \(2\left(x+y+z\right)-\left(xy+yz+zx\right)<\frac{8-xyz}{2}<4.\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)

Ta có đpcm

Dấu "=" xảy ra khi $x=y=\frac{1}{2}$

25 tháng 7 2018

\(VT=\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}\)

\(=\dfrac{4}{\left(x+y\right)^2}>4\)

25 tháng 7 2018

Cách khác.

Ta có: \(A=\dfrac{1}{x\left(x+y\right)}+\dfrac{1}{y\left(x+y\right)}=\dfrac{1}{x+y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(=\dfrac{1}{x+y}.\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

Áp dụng BĐT cho các số x,y >0 , ta có:

\(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\)

Và x+y \(\le\)1 \(\Rightarrow xy\le\dfrac{1}{4}\) \(\Rightarrow A\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Dấu ''='' xảy ra khi x = y =0,5

19 tháng 6 2016

Dự đoán dấu bằng có khi (x,y,z)(x,y,z) là các hoán vị (0;1;1).

Từ đó ta đánh giá làm mất căn:

Ta có:

\(4\sqrt{2}.\sqrt{\frac{xy+yz+zx}{x^2+y^2+z^2}}=\frac{8\left(xy+yz+zx\right)}{\sqrt{\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)}}\)\(\ge\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\)

Do đó ta chỉ cần có

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\ge6\)

Không mất tính tổng quát, giả sử \(x\ge y\ge z\) suy ra \(x\ge y>0,z\ge0\)

Khi đó, ta chứng minh BĐT mạnh hơn

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{16\left(xy+yz+zx\right)}{\left(x+y+z\right)^2}\ge6\)

\(\Leftrightarrow\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}-\frac{8\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\ge0\)

\(\Leftrightarrow\left(x+y+z\right)^3\left(x+y+2z\right)\ge8\left(x+z\right)\left(y+z\right)\left(x^2+y^2+z^2\right)\)

Hay \(\left(x+y+z\right)^4+z\left(x+y+z\right)^3\ge8z^2\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\left(x^2+y^2+z^2\right)\)

Theo AM-GM:\(\left(x+y+z\right)^4=\left(x^2+y^2+z^2+2\left(xy+yz+zx\right)\right)^2\ge8\left(xy+yz+zx\right)\left(x^2+y^2+z^2\right)\)

Vậy ta chỉ cần chứng minh \(z\left(x+y+z\right)^3\ge8z^2\left(x^2+y^2+z^2\right)\)

\(BDT\Leftrightarrow\left(x+y+z\right)^3\ge8z\left(x^2+y^2+z^2\right)\)

Ta có:\(\left(x+y+z\right)^3=x^3+y^3+z^3+3x\left(y^2+z^2\right)+3y\left(z^2+x^2\right)+3z\left(x^2+y^2\right)+6xyz\ge x^3+y^3+z^3+3x^2y+3xy^2+5xyz+8z^3+3z\left(x^2+y^2\right)\)

Suy ra \(\left(x+y+z\right)^3-8z\left(x^2+y^2+z^2\right)\ge x^3+y^3+3x^2y+3xy^2+5xyz-5z\left(x^2+y^2\right)\)

\(=x^3+y^3+3x^2y+3xy^2+5z\left(xy-x^2-y^2\right)\ge x^3+y^3+3x^2y+3xy^2+5y\left(xy-x^2-y^2\right)\)

\(\ge x^3+y^3+3x^2y+3xy^2-5y\left(x^2+y^2\right)\)

\(=\left(x^2-y^2+4\right)\left(x-y\right)\ge0\)

BĐT được chứng minh.

 

 

 

 

8 tháng 8 2016

v~ để cái này lp 9 thì ko hợp @@

9 tháng 8 2016

Sủ dụng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\text{ }ab\le\frac{\left(a+b\right)^2}{4}\)

\(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)

\(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{4.\frac{1}{4}}\)

\(=\frac{4}{\left(x+y\right)^2}+2+5\)

\(\ge4+2+5=11\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 8 2016

\(-------\)

Chứng minh bổ đề:  \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  \(\left(i\right)\) (với  \(a,b>0\)  )

Bđt  \(\left(i\right)\)  tương đương với bđt sau:

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)  \(\left(ii\right)\)

Ta cần chứng minh bđt  \(\left(ii\right)\)  luôn đúng với mọi \(a,b>0\)

Thật vậy,  ta áp dụng bđt  \(Cauchy\)  loại hai cho từng bộ số gồm hai số không âm đề giải quyết bài toán trơn tru như sau:

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\) \(\left(1\right)\)

\(a+b\ge2\sqrt{ab}\)  \(\left(2\right)\)

Nhân từng vế  \(\left(1\right)\)  và  \(\left(2\right)\) , ta suy ra điều phải chứng minh.

Vì bđt  \(\left(ii\right)\)  được chứng minh nên kéo theo bđt  \(\left(i\right)\)  luôn đúng với mọi  \(a,b>0\)

Đẳng thức xảy ra khi và chỉ khi  \(a=b\)

\(-------\)

Quay trở về bài toán, ta có:

\(1\ge x+y\ge2\sqrt{xy}\)

\(\Rightarrow\)  \(\sqrt{xy}\le\frac{x+y}{2}\le\frac{1}{2}\)

nên suy ra được  \(xy\le\frac{1}{4}\)

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

Áp dụng bđt  \(\left(i\right)\) cho biểu thức đầu tiên, bđt Cauchy cho biểu thức thứ hai và với chú ý rằng  \(xy\le\frac{1}{4}\) , ta được:

\(P\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{1}{4}}=4+2+5=11\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=\frac{1}{2}\)  (bạn cần làm rõ khúc này nha)

Vậy,  \(P_{min}=11\)  \(\Leftrightarrow\)  \(x=y=\frac{1}{2}\)

19 tháng 9 2020

a) \(ĐKXĐ:x,y\ne0;x\ne\pm y\)

Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x+y\right)^2}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{2x^2y}{\left(x-y\right)^2.\left(x+y\right)^2}-\frac{x^2.\left(x^2-y^2\right)}{\left(x^2-y^2\right).\left(x^2-y^2\right)}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2.\left(x^2+2xy+y^2\right)-2x^2y-x^2.\left(x^2-y^2\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{x^2y^2+y^4+2xy^3-2x^2y-x^4+x^2y^2}{\left(x-y\right)^2\left(x+y\right)^2}\right]\)

Đề này lỗi mình nghĩ vậy vì trên tử kia không đẹp lắm.....