Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu VT - VP
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)
Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0
\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)
=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)
mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm
a,
(a+ b)(\(\frac{1}{a}\)+\(\frac{1}{b}\)) =1+\(\frac{a}{b}\)+\(\frac{b}{a}\)+1 =2+\(\frac{a}{b}\)+\(\frac{b}{a}\)>=4 {vì\(\frac{a}{b}\)+\(\frac{b}{a}\)>=2 theo bất đẳng thức cô-si }.dau"="xay ra khi va chi khi a=b
b,
(a+b+c)(1/a+1/b+1/c)=1+a/b+a/c+1+b/a+b/c+1+c/a+c/b
=3+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))+(\(\frac{a}{c}\)+c/a)>=3+2+2+2=9
đầu"="xảy ra khi và chỉ khi a=b=c {>= có nghĩa là lớn hơn hoặc bằng}
áp dụng BĐT:
1/a +1/b+1/c>= 9/a+b+c mà a+b+c=1
=>1/a+1/b+1/c≥9
a) theo định lý côsi :
\(\dfrac{a}{b}\)+\(\dfrac{b}{a}\)luôn >=2 với mọi a, b , a.b > 0
-Áp dụng BĐT Caushy Schwarz ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{1}=9\)
-Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
\(a,\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\)\(\Leftrightarrow3+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge3+2+2+2=9\Rightarrowđpcm\)b, Đặt \(x=b+c;y=a+c;a+b=z\)
Khi đó :
\(=\dfrac{1}{2}\left[\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)-3\right]\) \(\ge\dfrac{1}{2}\left(2+2+2-3\right)=1,5\Rightarrowđpcm\)
Camon nha~