Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}x>2019\\y>2020\\z>2021\end{matrix}\right.\)
Đặt \(\sqrt{x-2019}=a,......\)
Ta được PT : \(\dfrac{1-a}{a^2}+\dfrac{1-b}{b^2}+\dfrac{1-c}{c^2}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\dfrac{1}{a^2}-\dfrac{1}{a}+\dfrac{1}{4}+\dfrac{1}{b^2}-\dfrac{1}{b}+\dfrac{1}{4}+\dfrac{1}{c^2}-\dfrac{1}{c}+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2=0\)
- Thấy : \(\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2\ge0,......\)
\(\Rightarrow\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{2}\right)^2\ge0\)
- Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{2}\\\dfrac{1}{b}=\dfrac{1}{2}\\\dfrac{1}{c}=\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
- Thay lại a. b. c ta được : \(\left\{{}\begin{matrix}\sqrt{x-2019}=2\\\sqrt{y-2020}=2\\\sqrt{z-2021}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2019=4\\y-2020=4\\z-2021=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2023\\y=2024\\z=2025\end{matrix}\right.\) ( TM )
Vậy ...
\(\sqrt{2021}-\sqrt{2020}=\dfrac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}=\dfrac{1}{\sqrt{2021}+\sqrt{2020}}\) là nghịch đảo của \(\sqrt{2021}+\sqrt{2020}\) (đpcm)
\(\sqrt{2021}-\sqrt{2020}=\dfrac{\left(\sqrt{2021}-\sqrt{2020}\right)\left(\sqrt{2021}+\sqrt{2020}\right)}{\sqrt{2021}+\sqrt{2020}}\)
\(=\dfrac{1}{\sqrt{2021}+\sqrt{2020}}\)(đpcm)
\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+n^2+\left(n+1\right)^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(n^2+n\right)^2+n^2+n^2+2n+1}{\left(n^2+n\right)^2}}=\sqrt{\dfrac{\left(n^2+n\right)^2+2\left(n^2+n\right)+1}{\left(n^2+n\right)^2}}\)
\(=\sqrt{\dfrac{\left(n^2+n+1\right)^2}{\left(n^2+n\right)^2}}=\dfrac{n^2+n+1}{n^2+n}=1+\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow A=1+\dfrac{1}{2.3}+1+\dfrac{1}{3.4}+....+1+\dfrac{1}{2021.2022}\)
\(=2020+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2021.2022}\)
\(=2020+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\)
\(=2020+\dfrac{1}{2}-\dfrac{1}{2022}=...\)
\(\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}=\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{2}-\dfrac{1}{6}-\dfrac{1}{3}}=\sqrt{\left(1+\dfrac{1}{2}-\dfrac{1}{3}\right)^2}=1+\dfrac{1}{2}-\dfrac{1}{3}\)
Cmttt ta được:
\(A=1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}+1+\dfrac{1}{2021}-\dfrac{1}{2022}\\ A=2020+\dfrac{1}{2}-\dfrac{1}{2022}=2020+\dfrac{505}{1011}=...\)
Ta có: \(A=\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{2020}+\sqrt{2021}}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2021}-\sqrt{2020}\)
\(=-\sqrt{2}+\sqrt{2021}\)
Lời giải:
Đặt $\sqrt{x}=t(t>0)$
$B=\frac{t^3-2t}{t^2(t+1)}=\frac{t^2-2}{t^2+t}$
Điều phải chứng minh tương đương với:
$B^{2021}+1> B(B^{2020}+1)$
$\Leftrightarrow B<1$
$\Leftrightarrow t^2-2}{t^2+t}-1<0$
$\Leftrightarrow \frac{-2-t}{t^2+t}<0$ (luôn đúng với mọi $t>0$)
Vậy.......
Đk: \(\forall x\in R\)
Ta có:\(\sqrt{x^2+1-2x}+\sqrt{x^2+4x+4}=\sqrt{1+2020^2+\frac{2020^2}{2021^2}}+\frac{2020}{2021}\)
<=> \(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=\sqrt{1+2020^2+2.2020+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(1+2020\right)^2+\frac{2020^2}{2021^2}-2.2020}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\sqrt{\left(2021-\frac{2020}{2021}\right)^2}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=\frac{2021^2-2020}{2021}+\frac{2020}{2021}\)
<=> \(\left|x-1\right|+\left|x+2\right|=2021\)
Lập bảng xét dầu
x -2 1
x - 1 - | - 0 +
x + 2 - 0 + | -
Xét các TH xảy ra :
TH1: x \(\le\)-2 => pt trở thành: 1 - x - x - 2 = 2021
<=> -2x = 2022 <=> x = -1011 (tm)
TH2: \(-2< x\le1\) => pt trở thành: 1 - x + x + 2 = 2021
<=> 0x = 2018 (vô lí) => pt vô nghiệm
TH3: \(x>1\) => pt trở thành: x - 1 + x + 2 = 2021
<=> 2x = 2020 <=> x = 1010 (tm)
Vậy S = {-1011; 1010}
Lời giải:
\(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=\frac{1}{x+y-z}\Leftrightarrow \frac{x+y}{xy}=\frac{1}{z}+\frac{1}{x+y-z}=\frac{x+y}{z(x+y-z)}\)
\(\Leftrightarrow (x+y)(\frac{1}{xy}-\frac{1}{z(x+y-z)})=0\)
\(\Leftrightarrow (x+y).\frac{z(x+y-z)-xy}{xyz(x+y-z)}=0\)
\(\Leftrightarrow (x+y).\frac{(z-x)(y-z)}{xyz(x+y-z)}=0\)
\(\Leftrightarrow (x+y)(z-x)(y-z)=0\)
Xét các TH sau:
TH1: $x+y=0$. TH này loại do ĐKXĐ $x,y>0$
TH2: $z-x=0\Leftrightarrow z=x$
$\Leftrightarrow \frac{1}{y}=\frac{2020}{2021}$
\(M=\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}=\frac{2}{\sqrt{y}}=2\sqrt{\frac{2020}{2021}}\)
TH3: $y-z=0$ tương tự TH2, ta có \(M=2\sqrt{\frac{2020}{2021}}\)
TK: Câu hỏi của Hà Phương Linh - Toán lớp 9 - Học trực tuyến OLM