K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

15 tháng 5 2017

Có: n2 + n + 2 = n(n + 1) + 2 

mà n(n + 1) là tích 2 số tự nhiên liên tiếp nên n(n + 1) chia hết cho 2

Do đó n2 + n + 2 chia hết cho 2

Giả sử n2 + n +2 chia hết cho 5 thì ta có n2 + n  + 2 chia hết cho 10

nên n2 + n + 2 có chữ số tận cùng là 0

nên n2 + n = n(n + 1) có chữ số tận cùng là 8

mà n(n + 1) là tích 2 số tự nhiên liên tiếp nên chỉ có các chữ số tận cùng là 0, 2 và 6

Điều này gây mâu thuẫn nên n2 + n + 2 không chia hết cho 5

17 tháng 6 2015

13. A = { 0 }

14. Có n + 1 số tự nhiên ko vượt quá n, trong đó n \(\in\) \(N\).

15. Những dòng cho ta 3 số tự nhiên liên tiếp giảm dần là dòng d

( câu cuối hình như bạn ghi sai đề rồi )

27 tháng 6 2016

cái cuối phài là 

m+1,m,m-1

6 tháng 2 2020

Ta có: \(N=0,2\cdot\left(2012^{2012}-2011^{2011}\right)\)

Vì \(2012^{2012}>0\) và \(2012^{2012}>2011^{2011}\Rightarrow2012^{2012}-2011^{2011}>0\) (1)

Ta xét chữ số tận cùng: \(2012^{2012}=\left(...6\right)\) và \(2011^{2011}=\left(...1\right)\)

\(\Rightarrow N=0,2\cdot\left(2012^{2012}-2011^{2011}\right)=0,2\cdot\left(\left(...6\right)-\left(...1\right)\right)\)

\(=0,2\cdot\left(...5\right)=\left(...0\right)\)(2)

Kết hợp (1) và (2) => N là một số tự nhiên ( ĐPCM )

1 tháng 7 2015

ta có tổng trên số 45 ko chia hết cho 30 

mà trong một tổng chỉ cần một số ko chia hết cho một số nào đó thì cả tổng ko chia hết cho số đó Vậy tổng trên chỉ chia hết cho 15 chứ ko chia hết cho 30

1 tháng 7 2015

Vì 60 chia hết cho 15=>60.n chia hết cho 15.                                                ->45 chia hết cho 15=> 60.n+45 chia hết cho 15.                                        Vì 60 chia hết cho 30=>60.n chia hết cho 30.                                               Nhưng 45 ko chia hết cho 30=>60.n+45 ko chia hết cho 30

23 tháng 12 2015

N không chia hết cho 3 có dạng 3k+1 ; 3k+2 .Với N=3k+1 .Suy ra N ^2=(3k+1).(3k+1)=3k.(3k+1)+1.(3 k+1)=3k.3k+3k+3k+1 = 3k.(3k+1+1)+1:3 dư 1 . Với N=3k+2 . Suy ra N^2=(3k+2).(3k+2)=3k.(3k+2)+2.3k+4=3k.(3k+2+2)+4:3 dư1 Vậy N^2:3 dư1 khi va chỉ khi N khong chia hết cho 3 B) Vì P là số tự nhiên >3. Suy ra p^2  :3 dư1 ( ở ý a) . Suy ra p^2=3 k+1 . Thay p^2 +2003=3k+1+2003=3k+2004 chia hết cho 3 . Suy ra c^2 + 2003 là hợp số