Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{24\cdot47-23}{24+47\cdot23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)
\(=\frac{24\cdot\left(24+23\right)-23}{24+\left(24+23\right)\cdot23}\cdot\frac{3\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9\left(\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}+1\right)}\)
\(=\frac{24^2+24\cdot23-23}{24+24\cdot23+23^2}\cdot\frac{3}{9}\) \(=\frac{24^2+23\cdot\left(24-1\right)}{\left(23+1\right)\cdot24\cdot23^2}\cdot\frac{1}{3}=1\cdot\frac{1}{3}=\frac{1}{3}\)
đặt \(A=\frac{2004}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2004}\)
\(A=\left(\frac{2003}{2}+1\right)+\left(\frac{2002}{3}+1\right)+..+\left(\frac{1}{2004}+1\right)+\frac{2005}{2005}\)
\(A=\frac{2005}{2}+\frac{2005}{3}+..+\frac{2005}{2004}+\frac{2005}{2005}\)
\(A=2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2004}+\frac{1}{2005}\right)\)
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{A}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2005}}{2005.\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2005}\right)}=\frac{1}{2005}\)
vậy P=1/2005
Ta có, với \(n\) nguyên dương: \(1+2+...+n=\frac{n\left(n+1\right)}{2}\)
Suy ra, \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Khi đó:
\(1-\frac{1}{1+2}=\frac{1.4}{2.3}\)
\(1-\frac{1}{1+2+3}=\frac{2.5}{3.4}\)
....
\(1-\frac{1}{1+2+...+2013}=\frac{2012.2015}{2013.2014}\)
\(1-\frac{1}{1+2+...+2014}=\frac{2013.2016}{2014.2015}\)
Suy ra, \(P=\frac{\left(1.2.....2013\right).\left(4.5.....2016\right)}{2.\left(3.4.....2014\right)^2.2015}=\frac{2016}{3.2014}=\frac{336}{1007}\)
Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)
Suy ra:
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)
A<1+1-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
Vậy A<2(đpcm)
1 /22 +1/ 32 +.......+ 1/ 1002 < 1/ 1. 2 + 1 / 2 .3 + 1 / 3. 4 + ...... + 1 / 99 .100
= 1- 1 / 2 + 1 / 2 - 1/ 3 + 1 / 3 - 1 / 4 +......+ 1 / 99 - 1 / 100
= 1 - 1 / 100< 1
=> 1 /22 +1/ 32 +.......+ 1/ 1002 < 1 ( đpcm)
Ta có : \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
...
\(\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}=1-\frac{1}{n}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<1\)
\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+...+\frac{2014}{2^{2014}}\)
\(\Rightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2014}{2^{2013}}\)
\(\Rightarrow2A-A=\left(1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{2014}{2^{2013}}\right)-\left(\frac{1}{2}+\frac{2}{2^2}+...+\frac{2014}{2^{2014}}\right)\)
\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}-\frac{2014}{2^{2014}}\)
Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
\(\Rightarrow2B=2+1+...+\frac{1}{2^{2012}}\)
\(\Rightarrow2B-B=\left(2+1+...+\frac{1}{2^{2012}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)\)
\(\Rightarrow B=2-\frac{1}{2^{2013}}< 2\)
\(\Rightarrow B< 2\)
\(\Rightarrow A< 2-\frac{2014}{2^{2014}}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)