Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(Vt\ge0\left(\forall a,b,c\right)\) nên dấu "=" xảy ra khi:
\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Rightarrow a=b=c\)
Ta có : a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
= (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
=> (a - b)2 + (b - c)2 + (c - a)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
b) Ta có : 2(x2 + t2) + (y + t)(y - t) = 2x(y + t)
=> 2x2 + 2t2 + y2 - t2 = 2xy + 2t
=> 2x2 + t2 + y2 = 2xt + 2xy
=> 2x2 + t2 + y2 - 2xt - 2xy = 0
=> (x2 - 2xy + y2) + (x2 + t2 - 2xt) = 0
=> (x - y)2 + (x - t)2 = 0
=> \(\hept{\begin{cases}x-y=0\\x-t=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=t\end{cases}}\Rightarrow x=y=t\left(\text{đpcm}\right)\)
c) Ta có a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
=> a2 + b2 + c2 + 2(ab + bc + ca) = 0
=> a2 + b2 + c2 = 0
=> a = b = c = 0
Khi đó A = (0 - 1)2003 + 02004 + (0 + 1)2005
= - 1 + 0 + 1 = 0
Vậy A = 0
Ta có: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{a}{2b}+\dfrac{b}{2c}+\dfrac{c}{2a}=\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\ge\dfrac{1}{2}.3=\dfrac{3}{2}\) ( BĐT AM - GM )
Dấu " = " khi a = b = c
\(\Rightarrowđpcm\)
a+b+c=0
<=>(a+b+c)^2=0
<=>a^2+b^2+c^2+2(ab+bc+ca)=0
Mà a^2+b^2+c^2>=0 với mọi a,b,c
=>ab+bc+ca<=0 với mọi a,b,c.
Dấu "="xảy ra<=>a=b=c=0.
Từ a+b+c=0 =>c=-a-b.thay vào có:
ab+bc+ca= ab-(a+b)^2= -(a^2+ab+b^2)= -1/2[(a+b)^2+a^2+b^2)]
vì (a+b)^2>=0, a^2>=0,b^2>=0 nên biểu thức này luôn luôn =<0. Dấu = xảy ra khi a=b=c=0.
giả thiết
=> a^2 / b+ c + ab/c+a + ac/ a+ b = a
ab/ (b+c) + b^2 / (c+a) + cb/ a+b = b
ac/ b+ c + bc/ c+a + c^2/ a+b = c
Cộng từng vế với nhau ta được :
a^2 / b+ c + ab/c+a + ac/ a+ b + ab/ (b+c) + b^2 / (c+a) + cb/ a+b + ac/ b+ c + bc/ c+a + c^2/ a+b > a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + (ab/ (c+ a) + bc/ (c+a) ) + (ac/ (a+b) + cb/ (a+b)) + (ab/ (b+c) + ac/ (b+c)) = a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + b + c + a = a+ b + c
=> a^2/ b+ c + b^2/ c+a + c^2/ a+b = 0 (ĐPCM)
giả thiết
=> a^2 / b+ c + ab/c+a + ac/ a+ b = a
ab/ (b+c) + b^2 / (c+a) + cb/ a+b = b
ac/ b+ c + bc/ c+a + c^2/ a+b = c
Cộng từng vế với nhau ta được :
a^2 / b+ c + ab/c+a + ac/ a+ b + ab/ (b+c) + b^2 / (c+a) + cb/ a+b + ac/ b+ c + bc/ c+a + c^2/ a+b > a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + (ab/ (c+ a) + bc/ (c+a) ) + (ac/ (a+b) + cb/ (a+b)) + (ab/ (b+c) + ac/ (b+c)) = a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + b + c + a = a+ b + c
=> a^2/ b+ c + b^2/ c+a + c^2/ a+b = 0 (ĐPCM)