Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 75 ( 4^ 2013+4^2012+...+4^2+4+1)+25
= 75( 4^ 2013+4^2012+...+4^2+4) +75 +25
= 75[4(4^2012+...+4^2+4+1)] +100
= 300(4^2012+...+4^2+4+1) +100
= 100 [3(4^2012+...+4^2+4+1) + 1 ] chia hết cho 100 (Đ.P.C.M)
=
đặt \(S=1+4+4^2+......+4^{1999}\)
\(\Rightarrow4S=4+4^2+4^3+....+4^{2000}\)
\(\Rightarrow4S-S=\left(4+4^2+4^3+....+4^{2000}\right)-\left(1+4+4^2+.....+4^{1999}\right)\)
\(\Rightarrow3S=4^{2000}-1\Rightarrow S=\frac{4^{2000}-1}{3}\)
Khi đó \(A=75.S=75.\frac{4^{2000}-1}{3}=\frac{75.\left(4^{2000}-1\right)}{3}=\frac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
75 chia hết cho 25.
42007 + ... + 4 + 1 chia 4 dư 1 hay không chia hết cho 4
=> 75(42007 + ... + 4 + 1) không chia hết cho 100.
Đặt A = 75 (41999 + 41998 + .... + 42 + 4 + 1) + 25
Đặt B = 41999 + 41998 + .... + 42 + 4 + 1
=> 4B = 42000 + 41999 + 41998 + .... + 42 + 4
=> 4B - B = 42000 + 41999 + 41998 + .... + 42 + 4 - 41999 - 41998 - .... -42 - 4 - 1
=> 3B = 42000 - 1
=> B = \(\frac{4^{2000}-1}{3}\)
Thay vào A có :
A = 75 . \(\frac{4^{2000}-1}{3}\)+ 25
= 25 . 3 . \(\frac{4^{2000}-1}{3}\)+ 25
= 25( 42000 - 1 + 1)
= 25 . 42000
Mà 25\(⋮\)25 ; 42000 \(⋮\)4 => A \(⋮\) 25.4 =100
Đặt S=41975+41974+...+42
=> 4S=41976+41975+...+43
=>4S-S=41976+41975+...+43-41975-41974-...-42
=> 3S=41976-42
=> \(S=\frac{4^{1976}-16}{3}\)
=> \(A=75.\left(4^{1975}+4^{1974}+...+4^2+5\right)+25\)
=> \(A=75.\left(S+5\right)+25\)
=> \(A=75.\left(\frac{4^{1976}-16}{3}+\frac{15}{3}\right)+25\)
=> \(A=75.\frac{4^{1976}-1}{3}+25\)
=> \(A=25.\left(4^{1976}-1\right)+25\)
=> \(A=25.4^{1976}-25+25\)
=> \(A=25.4^{1976}\)
=>
A chia hết cho 41976
=> ĐPCM
k mk đi mà làm ơnnnnnnnnnn