K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2021

Đề bài sai

Phản ví dụ: \(a=c=0;b=-2\) thì \(a^4+b^3+c^2+1=-7\)

Trong khi \(a\left(ab^2-a+c+1\right)=0\)

\(-7\) ko thể lớn hơn 0

2 tháng 4 2018

Thực hiện phép nhân đa thức với đa thức ở vế trái. 

=> VT = VP (đpcm)

27 tháng 11 2023

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

=>\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

=>\(2\left(ab+bc+ac\right)=0\)

=>ab+bc+ac=0

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

=>\(\dfrac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^3}=\dfrac{3}{abc}\)

=>\(\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3=3\left(abc\right)^2\)

\(\Leftrightarrow\left(ab+bc\right)^3-3\cdot ab\cdot bc\cdot\left(ab+bc\right)+\left(ac\right)^3=3\left(abc\right)^2\)

=>\(\left(-ac\right)^3-3\cdot ab\cdot bc\cdot\left(-ac\right)+\left(ac\right)^3-3\left(abc\right)^2=0\)

=>\(-a^3c^3+a^3c^3+3a^2b^2c^2-3a^2b^2c^2=0\)

=>0=0(đúng)

NV
17 tháng 2 2022

Do a;b;c là 3 cạnh của 1 tam giác

\(\Rightarrow a< b+c\Rightarrow2a< a+b+c=6\Rightarrow a< 3\)

Chứng minh tương tự ta được: \(b< 3;c< 3\)

\(\Rightarrow3-a>0;3-b>0,3-c>0\)

Do đó:

\(\left(3-a\right)\left(3-b\right)\left(3-c\right)\le\left(\dfrac{3-a+3-b+3-c}{3}\right)^3=\left(\dfrac{9-\left(a+b+c\right)}{3}\right)^3=1\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27\le1\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27\le1\)

\(\Leftrightarrow abc\ge3\left(ab+bc+ca\right)-28\)

\(\Leftrightarrow2abc\ge6\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-56\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc\ge3\left(a+b+c\right)^2-56=52\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=2\)

NV
17 tháng 2 2022

BĐT vế phải:

Vẫn từ chứng minh trên, \(3-a>0;3-b>0,3-c>0\)

\(\Rightarrow\left(3-a\right)\left(3-b\right)\left(3-c\right)>0\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-9\left(a+b+c\right)+27>0\)

\(\Leftrightarrow-abc+3\left(ab+bc+ca\right)-27>0\)

\(\Leftrightarrow abc< 3\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow2abc< 6\left(ab+bc+ca\right)-54\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a^2+b^2+c^2\right)+6\left(ab+bc+ca\right)-54\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)+2abc< 3\left(a+b+c\right)^2-54=54\) (đpcm)

5 tháng 3 2022

a. -Xét △AID: AD//BJ (ABCD là hình bình hành).

\(\Rightarrow\dfrac{IA}{IJ}=\dfrac{ID}{IB}\) (định lí Ta-let). (1)

-Xét △AIB: AB//DK (ABCD là hình bình hành).

\(\Rightarrow\dfrac{IK}{IA}=\dfrac{ID}{IB}\) (định lí Ta-let). (2)

-Từ (1), (2) suy ra: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) nên \(IA^2=IK.IJ\).

b. -Có: \(\dfrac{IA}{IJ}=\dfrac{IK}{IA}\) (cmt)

\(\Rightarrow\dfrac{IA+IJ}{IJ}=\dfrac{IK+IA}{IA}\)

\(\Rightarrow\dfrac{AJ}{IJ}=\dfrac{AK}{IA}\)

\(\Rightarrow\dfrac{AK}{IA}=\dfrac{AJ+AK}{IJ+IA}=\dfrac{AJ+AK}{AJ}\)

\(\Rightarrow\dfrac{1}{IA}=\dfrac{AJ+AK}{AJ.AK}\)

\(\Rightarrow\dfrac{1}{IA}=\dfrac{1}{AK}+\dfrac{1}{AJ}\)

 

5 tháng 3 2022

mik cảm ơn 

 

21 tháng 5 2023

Giải thích: `x^2-5x+1`

`=x^2-2. 5/2x+25/4-21/4`

`=(x-5/2)^2-21/4`

`=(x-5/2-\sqrt{21}/2)(x-5/2+\sqrt{21}/2)`

`=(x-[5+\sqrt{21}]/2)(x-[5-\sqrt{21}]/2)`

4 tháng 9 2020

Vì \(a^2+b^2\ge2ab,b^2+1\ge2b\),ta có:

\(\frac{1}{a^2+2b^2+3}=\frac{1}{a^2+b^2+b^2+1+1}\le\frac{1}{2\left(ab+b+1\right)}\)

Tương tự:\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)và \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)

Khi đó\(A\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+a}\right)\)

\(\Leftrightarrow A\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\)

Dấu"="trg BĐT trên xảy ra khi \(a=b=c=1\)

Vậy \(Max_P=\frac{1}{2}\Leftrightarrow a=b=c=1\)

 
4 tháng 9 2020

Chắc không được GP đâu !!

Áp dụng bđt cauchy , ta có :

+) \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2\)

+) \(b^2+2c^2+3\ge2bc+2c+2\)

+) \(c^2+2a^2+3\ge2ac+2a+2\)

Khi đó , ta có :

\(VT\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ac+2a+2}\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{bc+c+1}+\frac{abc}{ac+a+1}\right)\)( vì abc= 1 )

\(=\frac{1}{2}=VP\)( đoạn này ban tự phân tích ra nha , mk lmaf hơi tắt )

Vậy .................

11 tháng 9 2018

Trên CD lấy điểm K sao cho DA = DK. Khi đó ta chứng minh AK là phân giác góc A và BK cũng là phân giác góc B.

Bạn xem lời giải ở đây nhé.

Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath