K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

\(A=\frac{3x+2}{x-3}\)

Để A là số nguyên thì \(3x+2⋮x-3\)

Vì: \(x-3⋮x-3\)

\(\Rightarrow\)\(3.\left(x-3\right)⋮x-3\)

\(\Rightarrow\)\(3x-3.3⋮x-3\)

\(\Rightarrow\)\(3x-9⋮x-3\)

Mà: \(3x+2⋮x-3\)

\(\Rightarrow\)\(\left(3x+2\right)-\left(3x-9\right)⋮x-3\)

\(\Rightarrow\)\(3x+2-3x+9⋮x-3\)

\(\Rightarrow\)\(\left(3x-3x\right)+\left(2+9\right)⋮x-3\)

\(\Rightarrow\)\(11⋮x-3\)

\(\Rightarrow\)\(x-3\inƯ\left(11\right)\)

\(\Rightarrow\)\(x-3\in\left\{-11;-1;1;11\right\}\)

\(\Rightarrow\)\(x\in\left\{-8;2;4;14\right\}\)

Vậy \(x\in\left\{-8;2;4;14\right\}\)

14 tháng 12 2021

\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)

22 tháng 5 2015

Để P(x)=Q(x) thì:\(3x^3+x^2-3x-1=-3x^3-x^2-x-15\)

Nếu \(3x^3+x^2-3x-1=-3x^3-x^2-x-15\)

=>\(\left(3x^3+x^2-3x-1\right)-\left(-3x^3-x^2-x-15\right)=0\)

=>\(3x^3+x^2-3x-1+3x^3+x^2+x+15=0\)

=>\(\left(3x^3+3x^3\right)+\left(x^2+x^2\right)+\left(-3x+x\right)+\left(-1+15\right)=0\)

=>\(6x^3+2x^2-2x+14=0\)

=>\(6x^3+2x^2-2x=-14\)

26 tháng 5 2015

đề thi Chuyên mak a/c not a/b

6 tháng 7 2017

Bài 1

Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow\left(3x-y\right)4=\left(x+y\right)3\)

\(\Leftrightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Leftrightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

6 tháng 7 2017

Bài 2 : 

Ta có : 3x + 2y = y

=> 3x + y = 0

Lại có ; \(\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-3}{5}=\frac{3x-3}{6}=\frac{3x-3+y+3}{6+1}=\frac{3x+y}{6}=\frac{0}{6}=0\)

Nên \(\frac{x-1}{3}=0\Rightarrow x-1=0\Rightarrow x=1\)

       \(y-3=0\Rightarrow y=3\)

         \(\frac{z-3}{5}=0\Rightarrow z-3=0\Rightarrow z=3\)

Vậy x = 1 , y = 3 , z = 3

6 tháng 7 2017

Bài 1:

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\)

\(\Rightarrow\left(3x-y\right)4=\left(x+y\right)3\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=4y+3y\)

\(\Rightarrow9x=7y\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{7}{9}.\)

Vậy \(\dfrac{x}{y}=\dfrac{7}{9}.\)

7 tháng 7 2017

xử nốt đi :3

22 tháng 3 2019

\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)

\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)

Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)

14 tháng 12 2022

`a)A` nguyên `<=>x+2 in Ư_5`

  Mà `Ư_5 ={+-1;+-5}`

`@x+2=1=>x=-1`

`@x+2=-1=>x=-3`

`@x+2=5=>x=3`

`@x+2=-5=>x=-7`

______________________________________________

`b)B=[x-5]/x=1-5/x`

 `B` nguyên `<=>x in Ư_{5}`

   Mà `Ư_{5}={+-1;+-5}`

 `=>x in {+-1;+-5}`

______________________________________________

`c)C=[x-2]/[x+1]=[x+1-3]/[x+1]=1-3/[x+1]`

   `C` nguyên `<=>x+1 in Ư_3`

  Mà `Ư_3={+-1;+-3}`

`@x+1=1=>x=0`

`@x+1=-1=>x=-2`

`@x+1=3=>x=2`

`@x+1=-3=>x=-4`

______________________________________________

`d)D=[2x-7]/[x+1]=[2x+2-9]/[x+1]=2-9/[x+1]`

  `D` nguyên `<=>x+1 in Ư_9`

 Mà `Ư_9 ={+-1;+-3;+-9}`

`@x+1=1=>x=0`

`@x+1=-1=>x=-2`

`@x+1=3=>x=2`

`@x+1=-3=>x=-4`

`@x+1=9=>x=8`

`@x+1=-9=>x=-10`

23 tháng 12 2022

cách này có phải lập bảng ko bạn