Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề thì phải , coi lại giùm mình nhé :
Đặt \(\sqrt[3]{a}=x;\)\(\sqrt[3]{b}=y;\)\(\sqrt[3]{c}=z\)\(\left(a,b,c>0\right)\)
Ta cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge9\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt[3]{3.\frac{1}{xyz}}\)
Và \(x+y+z\ge\sqrt[3]{3xyz}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\sqrt[3]{3.\frac{1}{abc}}.\sqrt[3]{3abc}=9\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)
Vậy \(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\ge\frac{9}{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}\)\(\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\)
Ta cần chứng minh \(\frac{3}{\sqrt[3]{abc}}\ge\frac{9}{abc+2}\Leftrightarrow abc+2\ge3\sqrt[3]{abc}\)
BĐT trên luôn đúng theo AM-GM vì: \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
PT cho tđuong với: (x^2 +9). (x^2 + 9x) = 22 (x-1)^2
Đặt t = [x^2 + 9 + x^2 + 9x]/2 hay t= x^2 + (9x + 9)/2.
Khi đó: x^2 + 9 = t - 9(x-1)/2
x^2 + 9x = t + 9(x-1)/2
PT cho trở thành: [t - 9(x-1)/2]. [t + 9(x-1)/2] = 22(x-1)^2
<=> t^2 -(81/4)(x-1)^2 = 22(x-1)^2
<=> t^2 = (169/4)(x-1)^2
<=> t = 13/2. (x-1) hoặc t= -13/2. (x-1)
<=> 2t =13x -13 hoặc 2t =-13x + 13
hay 2x^2 + 9x+ 9 =13x -13 hoặc 2x^2 + 9x +9 = -13x +13
hay 2x^2 - 4x +22 =0 hoặc 2x^2 + 22x - 4 =0
PT bậc hai thứ nhất vô nghiệm, PT bậc hai thứ hai cho ta hai nghiệm là:
x= (-11 +căn(129))/2 , x= (-11 - căn(129))/2.
cách 2:đặt x-1=k
pt trở thành (k+1)(k2+2k+10)(k+10)=22k2
<=>(k2+2k+10)(k2+11k+10)=22k2
tự làm tiếp
Mấy cái dấu "=" anh tự xét.
Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)
b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
\(sina.sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)\)
\(=-\frac{1}{2}sina\left[cos\frac{2\pi}{3}-cos2a\right]=-\frac{1}{2}sina\left(-\frac{1}{2}-cos2a\right)\)
\(=\frac{1}{4}sina+\frac{1}{2}sina.cos2a=\frac{1}{4}sina+\frac{1}{4}sin3a-\frac{1}{4}sina\)
\(=\frac{1}{4}sin3a\)
\(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}=sin\frac{\pi}{9}sin\left(\frac{\pi}{3}-\frac{\pi}{9}\right)sin\left(\frac{\pi}{3}+\frac{\pi}{9}\right)=\frac{1}{4}sin\frac{\pi}{3}=\frac{\sqrt{3}}{8}\)
\(cosa.cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{2}cosa\left(cos\frac{2\pi}{3}+cos2a\right)\)
\(=\frac{1}{2}cosa\left(cos2a-\frac{1}{2}\right)=\frac{1}{2}cosa.cos2a-\frac{1}{4}cosa\)
\(=\frac{1}{4}cos3a+\frac{1}{4}cosa-\frac{1}{4}cosa=\frac{1}{4}cos3a\)
\(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}=cos\frac{\pi}{18}.cos\left(\frac{\pi}{3}-\frac{\pi}{18}\right).cos\left(\frac{\pi}{3}+\frac{\pi}{18}\right)=\frac{1}{4}cos\frac{\pi}{6}=\frac{\sqrt{3}}{8}\)
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)
\(< \sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow N< 2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)
\(N< 2\left(1-\frac{1}{\sqrt{2012}}\right)< 2.1=2\)
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Dễ mà
\(9^{\frac{1}{2}}=\sqrt{9}=3\)
Ta có: \(9^{\frac{1}{2}}=\left(3^2\right)^{\frac{1}{2}}=3^{2.\frac{1}{2}}=3^1=3\)( đpcm )