Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^4-4a=b^4-4b$
$\Leftrightarrow (a^4-b^4)-(4a-4b)=0$
$\Leftrightarrow (a-b)(a+b)(a^2+b^2)-4(a-b)=0$
$\Leftrightarrow (a-b)[(a+b)(a^2+b^2)-4]=0$
$\Rightarrow (a+b)(a^2+b^2)-4=0$ (do $a-b\neq 0$ với mọi $a,b$ phân biệt)
$\Rightarrow (a+b)(a^2+b^2)=4>0$
Mà $a^2+b^2>0$ với mọi $a,b$ phân biệt nên $a+b>0$
Mặt khác:
Áp dụng BĐT AM-GM:
$4=(a+b)(a^2+b^2)\geq (a+b).\frac{(a+b)^2}{2}$
$\Rightarrow 8> (a+b)^3$
$\Rightarrow 2> a+b$
Vậy $0< a+b< 2$
Ta có đpcm.
Ta có \(-\dfrac{4ab^2}{4b^2+1}\ge-\dfrac{4ab^2}{2\sqrt{4b^2}}=\dfrac{4ab^2}{4b}=ab\)
\(-\dfrac{4a^2b}{4a^2+1}\ge-\dfrac{4a^2b}{2\sqrt{4a^2}}=\dfrac{4a^2b}{4a}=ab\)
Mà \(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4ab^2}{4a^2+1}\ge a-ab+b-ab=4ab-2ab=2ab\)
Mà \(a+b=4ab\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
Dấu "=" \(\Leftrightarrow a=b=\dfrac{1}{2}\)
Lời giải:
ĐK $\Rightarrow \frac{1}{a}+\frac{1}{b}=4$
Đặt $\frac{1}{x}=a; \frac{1}{y}=b$ thì bài toán trở thành:
Cho $a,b>0$ thỏa mãn $a+b=4$. CMR:
$P=\frac{x^2}{y(x^2+4)}+\frac{y^2}{x(y^2+4)}\geq \frac{1}{2}$
-----------------------
Áp dụng BĐT AM-GM:
$\frac{x^2}{y(x^2+4)}+\frac{y(x^2+4)}{64}\geq \frac{x}{4}$
$\frac{y^2}{x(y^2+4)}+\frac{x(y^2+4)}{64}\geq \frac{y}{4}$
Cộng theo vế và rút gọn:
$P\geq \frac{3(x+y)-xy}{16}=\frac{12-xy}{16}$
Mà $xy\leq \frac{(x+y)^2}{4}=4$
$\Rightarrow P\geq \frac{12-4}{16}=\frac{1}{2}$
Ta có đpcm.
Ta có
\(\sqrt{2}\sqrt{4a+1}\le\frac{4a+3}{2}\)
\(\sqrt{2}\sqrt{4b+1}\le\frac{4b+3}{2}\)
\(\sqrt{2}\sqrt{4c+1}\le\frac{4c+3}{2}\)
\(\sqrt{2}\sqrt{4d+1}\le\frac{4d+3}{2}\)
Cộng vế theo vế ta được
\(\sqrt{2}\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}+\sqrt{4d+1}\right)\)
\(\le8\)
<=> \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\sqrt{4d+1}\le4\sqrt{2}\)
Ap dung BDT Bun-hia-cop-xki ta co:
\(\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1+1+1\right)\left[4\left(a+b+c\right)+3\right]=21\)
\(\Rightarrow-\sqrt{21}\le\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}< 5\)
\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
Ap dung BDT Bun-hia-cop-xki ta co:
\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1+1+1\right)\left[4\left(a+b+c\right)+3\right]=21(4a+1+4b+1+4c+1)2≤(1+1+1)[4(a+b+c)+3]=21
\Rightarrow-\sqrt{21}\le\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}< 5⇒−21≤4a+1+4b+1+4c+1≤21<5
\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5⇒4a+1+4b+1+4c+1<5
\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)
\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)
\(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4a^2b}{4b^2+1}\)
\(\ge a-\dfrac{4ab^2}{4b}+b-\dfrac{4a^2b}{4a}\) (bđt Cô-si)
=a-ab+b-ab=a+b-2ab=4ab-2ab=2ab
Lại có a+b=4ab \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
Dấu ''='' xảy ra khi \(a=b=\dfrac{1}{2}\)
\(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)
\(\Leftrightarrow a-\dfrac{a}{4b^2+1}+b-\dfrac{b}{4a^2+1}\le a+b-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{4ab^2}{4b^2+1}+\dfrac{4ba^2}{4a^2+1}\le4ab-\dfrac{1}{2}\)
\(\sum\dfrac{4ab^2}{4b^2+1}\le^{CS}2ab\)
\(\Rightarrow CM:2ab\le4ab-\dfrac{1}{2}\Leftrightarrow ab\ge\dfrac{1}{4}\)
Từ GT \(\Rightarrow4ab=a+b\ge2\sqrt{ab}\Leftrightarrow ab\ge\dfrac{1}{4}\)
\(\Rightarrow dpcm\)
Áp dụng BĐT Cauchy- Schwarz, ta được:
\(\sqrt{4a+5b}+\sqrt{4b+5c}+\sqrt{4c+5a}\le\sqrt{\left(1^2+1^2+1^2\right)\left(4a+5b+4b+5c+4c+5a\right)}\)
\(=\sqrt{3\left(9a+9b+9c\right)}=\sqrt{3.9\left(a+b+c\right)}=\sqrt{3.9.3}=9\)
\(\RightarrowĐpcm\)
Thay \(a=b=1\Rightarrow\frac{2}{8.7}\ge\frac{1}{25}\Leftrightarrow\frac{2}{56}\ge\frac{1}{25}\) (sai)
TA CÓ:
\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)
\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)
ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)
\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)
TA CẦN C/M:
\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\) \(\left(=2abc\left(a+b+c\right)\right)\)
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)
VẬY CẦN C/M:
\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)
XÉT HIỆU:
\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)
\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)
VÌ:
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)
\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)
\(\Rightarrow DPCM\)
Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b
Giả sử \(c=min\left\{a,b,c\right\}\)
Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)
Vì a>b
nên 4a>4b
=>4a+7>4b+7
mà 4b+7>4b+5
nên 4a+7>4b+5
Vì: \(a>b\) nên nhân a,b với \(4\), ta có:
\(4a>4b\)
Biết: \(7>5\)
\(\rightarrow4a+7>7b+5\left(đpcm\right)\)