Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:2^n-1+2^n
=2^n:2^1+2^n
=(2^n)(1/2+1)
=2^nx1
=2^n
=>2^n=2^n-1+2^n
a,n2+3n+3 chia hết cho n+1
=>n2+n+2n+2+1 chia hết cho n+1
=>n(n+1)+2(n+1)+1 chia hết cho n+1
=>1 chia hết cho n+1
=>n+1 E Ư(1)={1;-1}
=>n E {0;-2}
b, n2+4n+2 chia hết cho n+2
=>n2+2n+2n+4-2 chia hết cho n+2
=>n(n+2)+2(n+2)-2 chia hết cho n+2
=>2 chia hết cho n+2
=>n+2 E Ư(2)={1;-1;2;-2}
=>n E {-1;-3;0;-4}
c, n2-2n+3 chia hết cho n-1
=>n2-n-n+1+4 chia hết cho n-1
=>n(n-1)-(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
a) (-25) . 21. (-2)2. (-|-3|) . (-1)2n+1 (n thuộc N*)
=(-25).21.4.(-3).(-1)
=4.(-25).63
=63.(-100)=-6300
b, (-5)3 . 67. (-|-23|) . (-1)2n (n thuộc N*)
=(-5)3 . 67. (-23) . 1
=(5.2)3.67
=1000.67=67000
Bài 1:
a) Vì 10n luôn luôn có cs tận cùng là 0 (luôn luôn 10;100;1000;... đều trừ 1 thì đều chia hết cho 9)
suy ra 10n-1 chia hết cho 9
b) Vì 10n luôn luôn có cs tận cùng là 0
ta có 10n sẽ có tổng các cs của nó là 1
Vậy 10n+8 sẽ có tổng các cs là 9
Mà 9 chia hết cho 9 nên 10n+8 sẽ chia hết cho 9.
Quy ước toán học dấu x = dấu .
===================================
1. (3x - 5)4 = 28
<=> (3x - 5)4 = 44
=> Ta có 2 trường hợp :
* TH1 : \(3^x-5=4\Rightarrow3^x=9\Rightarrow x=2\)
* TH2 : \(3^x-5=-4\Rightarrow3^x=1\Rightarrow x=0\)
Vậy x=1 hoặc x=0
1. Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath
ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
...............
\(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
cộng vế với vế ta được:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(VP=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}<1\)
\(=>VP<1\)
\(\ \)Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\left(dpcm\right)\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\left(đpcm\right)\)
2n=2n-1+2n-1
2n=2n:21+2n:21
2n=(2n+2n):21
2n=(2n+2n):2
2n=2n.2:2
2n=2n( đpcm)
thank you bn nhìu, bn thật là tốt quá!!!!!!!!!