K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Câu a) thôi, câu b) chị chưa nghĩ được!

+) 2 số lẻ liên tiếp có dạng là 2n + 1 và 2n + 3 ( n thuộc N )

+) Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N)

=> 2n + 1 chia hết cho d

     2n + 3 chia hết cho d

Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d

<=> 2 chia hết cho d

=> d thuộc Ư ( 2 )

=> d thuộc {1; 2}

Nhưng d là số lẻ => d ≠ 2 => d = 1

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

11 tháng 3 2017

Gọi d là UCLN(2n+1;14n+5)

->(14n+5)-(2n+1)chia hết cho d

->(14n+5)-7(2n+1) chia hết cho d

->14n+5-14n-1 chia hết cho d

->n+5-n-1

4 chia hết cho d

d thuộc {1;-1;2;-2;4;-4}

Sau đó thì bạn dùng phương pháp thử chọn nha.

24 tháng 11 2018

Gọi d là ƯCLN(5n+3;3n+2)

=> 5n+3 chia hết cho d

=> 3n+2 chia hết cho d

=> 3(5n+3)-5(3n+2) chia hết cho d

=> 1 chia hết cho d

=> d E {-1;1}

Vậy: 5n+3 và 3n+2 luôn nguyên tố cùng nhau (ĐPCM)

15 tháng 1 2018

a, Gọi d là ƯC ( 7n + 10 ; 5n + 7 ) 

Theo bài ra ta có : 7n + 10 chia hết cho d

=> 5 ( 7n + 10 ) chia hết cho d

=> 35n + 50 chia hết cho d ( 1 )

5n + 7 chia hết cho d 

=>7 ( 5n + 7 ) chia hết cho d

=> 35n + 49 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d 

=> 1 chia hết cho d

Vậy .....

b ) 14n + 3 và 21n + 4

Gọi d là ƯC ( 14n + 3 ; 21n + 4 )

Ta có : 14n + 3 chia hết cho d

=> 3 ( 14n + 3 ) chia hết cho d

=> 42n + 9 chia hết cho d ( 1 )

21n + 4 chia hết cho d

=> 2 ( 21n + 4 ) chia hết cho d

=> 42n + 8 chia hết cho d ( 2 )

Từ ( 1 ) và ( 2 ) => ( 42n + 9 ) - ( 42 n + 8 ) chia hết cho d

=> 1 chia hết cho d

Vậy ........

27 tháng 11 2015

gọi UCLN(2n+1;14n+5) là d

ta có :

2n+1 chia hết cho d => 7(2n+1) chia hết cho d => 14n+7 chia hết cho d

14n+5 chia hết cho d

=>(14n+7)-(14n+5) chia hết cho d

=>2 chia hết cho d

=>d thuộc U(2)={1;2}

 mà d \(\ne\)2 vì 2n+1 là số lẻ ko chia hết cho 2

=>d=1

=>UCLN(2n+1;14n+5) là 1

=>ntcn 

=>dpcm

23 tháng 11 2016

Goi ƯCLN 2n+1 ; 14n+5 là d

\(\Rightarrow\begin{cases}2n+1⋮d\\14n+5⋮d\end{cases}\)

=> 7 ( 2n + 1 ) - ( 14 n + 5 ) ⋮ d

=> 2 ⋮ d

Mà 2n + 1 lẻ

=> d = 1

Vậy ...........

23 tháng 11 2016

BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau

:3) 2n + 1 và 14n + 5 với n ∈ N

Gọi d là = (2n+1, 14n+5)

=) 2n+1 chia hết cho d

=)14n+ 5 chia hết cho d

Vì 2n+1 là số lẻ mà d là ước của 2n+1

=) d là số lẻ

Ta có: 7 (2n+1) - (14n+5)

= 14n + 7 - 14n + 5

= 2

Mà 2n+1 lẻ

=) d= 1

Vậy (2n+1, 14n+5) = 1

 

15 tháng 11 2018

Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))

\(\Rightarrow\)2n+5\(⋮\)d

         6n+11\(⋮\)d

\(\Rightarrow\)12n+30\(⋮\)d

          12n+22\(⋮\)d

\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d

\(\Rightarrow\)8\(⋮\)d

\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}

Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ

\(\Rightarrow\)d=lẻ=1

Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)

15 tháng 11 2018

Gọi (2n + 5 , 6n + 11) = d   (d thuộc N*)

=>   2n + 5 \(⋮\)d

       6n + 11 \(⋮\)d

=>  3(2n + 5) \(⋮\)d

       6n + 11  \(⋮\)d

=>   6n + 15  \(⋮\)d

       6n + 11   \(⋮\)d

=> (6n + 15) - (6n + 11)  \(⋮\)d

=> 6n + 15 - 6n - 11  \(⋮\)d

=> 15 - 11    \(⋮\)d    

=> 4        \(⋮\)d               

=> d​  \(\in\) Ư(4)

Mà ta thấy 2n + 5 và 6n + 11 là số lẻ

Vậy d  \(\in\) Ư(4) là số lẻ 

Mà Ư(4) là số lẻ là {1}  => d = 1

Vậy (2n + 5 , 6n + 11) = 1   hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau

4 tháng 12 2018

Gọi ƯCLN ( 2n+1, 6n+4) là d ( d thuộc N)

Ta có:

2n + 1 chia hết chia cho d => 3(2n+1) chia hết cho d => 6n+3 chia hết cho d     (1)

6n+4 chia hết cho d                                                                                               (2)

Từ (1), (2) suy ra:

(6n+4) - (6n+3) chia hết cho d

                      1 chia hết cho d

=>                   d=1

=>                    ƯCLN(2n+1,6n+4) = 1

Vậy 2n+1 và 6n+4 là hai số nguyên tố cùng nhau

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please