Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{x^2-4x+4}{4-x^2}=\frac{x^2-2.2.x+2^2}{2^2-x^2}=\frac{(x-2)^2}{(2-x)(2+x)}=\frac{(2-x)^2}{(2-x)(2+x)}=\frac{2-x}{2+x}\) (đpcm)
\(\frac{x^3-9x}{15-5x}=\frac{x(x^2-9)}{5(3-x)}=\frac{x(x-3)(x+3)}{5(3-x)}=\frac{-x(3-x)(x+3)}{5(3-x)}=\frac{-x(x+3)}{5}=\frac{-x^2-3x}{5}\) (đpcm)
\(\frac{x^3-x^2-x-2}{x^5-3x^4+4x^3-5x^2+3x-2}\)
\(=\frac{x^3-2x^2+x^2-2x+x-2}{x^5-2x^4-x^4+2x^3+2x^3-4x^2-x^2+2x+x-2}\)
\(=\frac{\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)}{\left(x^5-2x^4\right)-\left(x^4-2x^3\right)+\left(2x^3-4x^2\right)-\left(x^2-2x\right)+\left(x-2\right)}\)
\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)}{x^4\left(x-2\right)-x^3\left(x-2\right)+2x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-2\right)\left(x^4-x^3+2x^2-x+1\right)}=\frac{x^2+x+1}{x^4-x^3+2x^2-x+1}\)
a) A xác định \(\Leftrightarrow x^2-4\ne0\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\frac{x^2+4x+4}{x^2-4}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{x-2}\)
c) Để A nguyên thì x + 2 ⋮ x - 2
<=> x - 2 + 4 ⋮ x - 2
Vì x - 2 ⋮ x - 2
=> 4 ⋮ x - 2=> x - 2 thuộc Ư(4) = { 1; 2; 4; -1; -2; -4 }
Tự giải nốt nhé
\(a,ĐKXĐ:x\ne\pm2\)
\(b,A=\frac{x^2+4x+4}{x^2-4}=\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x+2}{x-2}\)
\(c,\frac{x+2}{x-2}=\frac{x-2+4}{x-2}=1+\frac{4}{x-2}\)
Do đó : A có giá trị nguyên \(\Leftrightarrow\frac{4}{x-2}\) có giá trị nguyên
\(\Leftrightarrow4⋮x-2\) ( vì \(\left(x-2\right)\inℤ\) )
\(\Leftrightarrow\left(x-2\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bn lập bảng xét các giá trị để tìm x