Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(10^{50}+44\)
Mà: \(10^{50}=100...0\) (50 số 0)
\(10^{50}\) có chữ số cuối cùng là 0 nên \(10^{50}\) ⋮ 2
Và: \(44\) ⋮ 2 \(\Rightarrow10^{50}+44\) ⋮ 2
________
Ta có: \(10^{50}+44\)
Mà: \(10^{50}=100...0\) (50 số 0)
Tổng các chữ số là: \(1+0+...+0=1\)
Tổng các chữ số của 44 là: \(4+4=8\)
\(\Rightarrow10^{50}+44\) có tổng các chữ số là: \(1+8=9\) ⋮ 9
Nên: \(10^{50}+44\) ⋮ 9
10⁵⁰ ⋮ 2
44 ⋮ 2
⇒ (10⁵⁰ + 44) ⋮ 2
*) Ta có:
10⁵⁰ = 1000...000 (50 chữ số 0)
⇒ 10⁵⁰ + 44 có tổng các chữ số là:
1 + 0 + 0 + ... + 0 + 4 + 4 = 9 ⋮ 9
⇒ (10⁵⁰ + 44) ⋮ 9
Vậy 10⁵⁰ + 44 chia hết cho cả 2 và 9
Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath
Ta có : 1919+6919
= ( 19 + 69 ) ( 1918- 1917.69 + .... + 6919)
= 88 . ( 1918- 1917.69 + .... + 6919)
= 44 . 2 . ( 1918- 1917.69 + .... + 6919) chia hết cho 44
Vậy 1919 + 6919 chia hết cho 44
học tốt
+) Có : \(8^5+2^{11}=\left(2^3\right)^5+2^{11}=2^{15}+2^{11}=2^{11}\left(2^4+1\right)=2^{11}.17\)
Rõ ràng kết quả trên chia hết cho 17
+ ) Áp dụng hằng đẳng thức :
\(a^n+b^n=\left(a+b\right)\left(a^{n-1}-a^{n-2}b+a^{n-3}b^2-...-ab^{n-2}+b^{n-1}\right)\)với mọi n lẻ
Có : \(19^{19}+69^{19}=\left(19+69\right)\left(19^{18}-19^{17}.69+...+69^{18}\right)=88\left(19^{18}-19^{17}.69+...+69^{18}\right)\) chia hết cho 44
Làm gì có chuyện 1919+6919=(19+69)19