K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

Bạn Lê Phương Thảo là sai,cm chia hết cho 29 mà

27 tháng 12 2015

Hình như đề là chia hết cho 33 bạn ak

kết quả là 1081344 chia hết cho 33

thế thì chia hết cho 33

hì bì mk học dốt toán

28 tháng 10 2019

\(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33\)

Không chia hết cho 17. em xem lại đề bài nhé.

6 tháng 7 2015

B,

ta thấy:

16^5=2^20  

=> A=16^5 + 2^15

 = 2^20 + 2^15

 = 2^15.2^5 + 2^15

 = 2^15(2^5+1)  

=2^15.33  

số này luôn chia hết cho 33

20 tháng 10 2018

b) \(16^5+2^{15}⋮33\)

\(=\left(2^4\right)^5+2^{15}\)

\(=2^{20}+2^{15}\)

\(=2^{15}.\left(1+2^5\right)\)

\(=2^{15}.33⋮33\)

28 tháng 1 2018

a) \(5+5^2+5^3+....+5^{100}\)

đặt \(A=5+5^2+5^3+....+5^{100}\) ( \(A\) có \(100\) số hạng )

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+....+\left(5^{99}+5^{100}\right)\) ( có \(100\div2=50\) nhóm )

\(A=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+....+5^{99}.6\)

\(A=6\left(5+5^3+....+5^{99}\right)\)

vì \(6⋮6\Rightarrow6\left(5+5^3+....+5^{99}\right)⋮6\Rightarrow A⋮6\)

b) \(2+2^2+2^3+....+2^{100}\)

đặt \(B=2+2^2+2^3+....+2^{100}\) ( \(B\) có \(100\) số hạng )

\(B=\left(2+2^2+2^3+2^4+2^5\right)+.....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) ( có \(100\div5=20\) nhóm )

\(B=2\left(1+2+2^2+2^3+2^4\right)+....+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(B=2.31+....+2^{96}.31\)

\(B=31\left(2+...+2^{96}\right)\)

vì \(31⋮31\Rightarrow31\left(2+...+2^{96}\right)\Rightarrow B⋮31\)

28 tháng 1 2018

a) 5+5^2+5^3..+5^100

=(5+5^2)+(5^3+5^4)+....+(5^99+5^100)

=5.(1+5)+5^3.(1+5)+....+5^99.(1+5)

=5.6+5^3.6+.....+5^99.6

=6.(5+5^3+.....+5^99):6