Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cách này là hữu ích nhất, còn có 1 cacnhs nữa là xét mod nhưng rất dài dòng và khó phát hiện nữa !
Đây là một hằng đẳng thức tổng quát bạn ơi,
\(a^{2k+1}+b^{2k+1}=\left(a+b\right)\left(a^{2k}+a^{2k-1}b+a^{2k-2}b^2+...+a^2b^{2k-2}+ab^{2k-1}+b^{2k}\right)\)Từ đó ta có: \(a^{2k+1}+b^{2k+1}⋮a+b\)
\(3^{15}+3^{16}+3^{17}\)
\(=3^{15}\left(1+3+9\right)\)
\(=3^{15}.13\)
\(\Rightarrow3^{15}\times13⋮3\)
Vậy \(3^{15}+3^{16}+3^{17}⋮3\)
Ta có :
\(3^{15}+3^{16}+3^{17}\)
\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)
\(\rightarrow3^{15}+3^{16}+3^{17}⋮13\left(đpcm\right)\)
Ta có : \(3^{15}+3^{16}+3^{17}\)
\(=3^{15}\cdot\left(1+3+3^2\right)=3^{15}\cdot13⋮13\)
\(\Rightarrow3^{15}+3^{16}+3^{17}⋮13\)(đpcm)
Đặt A = n(n^4-16).
Ta có: n(n^4-16) = n(n^2-4)(n^2+4) = n(n-2)(n+2)(n^2+4)
Để chứng minh A chia hết cho 15, ta sẽ chứng minh A chia hết cho cả 3 và 5.
a. Chứng minh A chia hết cho 3:
- Nếu n = 3k, dĩ nhiên A chia hết cho 3.
- Nếu n = 3k+1, => n+2 = 3k+3 chia hết cho 3 => A chia hết cho 3.
- Nếu n = 3k+2, => n-2 = 3k chia hết cho 3 => A chia hết cho 3.
b. Chứng minh A chia hết cho 5:
- Nếu n=5k dĩ nhiên A chia hết cho 5.
- Nếu n = 5k+1, => n^2+4 = ((5k+1)^2+4) = 25k^2+10k+5 chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+2, => n-2 = 5k chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+3, => n+2 = 5k+5 chia hết cho 5 => A chia hết cho 5.
- Nếu n = 5k+4, => n^2+4 = ((5k+4)^2+4) = 25k^2+40k+20 chia hết cho 5 => A chia hết cho 5.
Trong mọi trường hợp,A chia hết cho cả 3 và 5, mà 2 số này nguyên tố cùng nhau => A chia hết cho 15
Ta có: \(3^{15}+3^{16}+3^{17}=3^{15}\left(1+3+3^2\right)=3^{15}\left(1+3+9\right)=3^{15}.13\)
Ta thấy: \(13⋮13\Rightarrow3^{15}.13⋮13\)
\(\Rightarrow3^{15}+3^{16}+3^{17}⋮13\)\(\left(đpcm\right)\)
\(3^{15}+3^{16}+3^{17}=3^{16}\left(1+3+9\right)=13\cdot3^{16}\)chia hết cho 13.
3^15+3^16+3^17
=3^15.(1+3+9)
=3^15.13
13 chia hết cho 13 hiển nhiên 3^15.13 cũng vậy
Vậy 3^15+3^16+3^17 chia hết cho 13
Chúc chị học tốt^^
Vì:
\(16^{15}+25^{15}\)luôn chia hết cho \(16+25=41\)do 15 lẻ
\(\Rightarrow16^{15}+25^{15}⋮41\)