Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
\(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{\left(3x+1\right).\left(3x+4\right)}\)=\(\dfrac{1344}{2017}\)
\(A=\dfrac{2}{3}(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{3x+1}-\dfrac{1}{3x+4}\))=\(\dfrac{1344}{2017}\)
\(A=\dfrac{2}{3}(1-\dfrac{1}{3x+4})\)=\(\dfrac{1344}{2017}\)
\(A=1-\dfrac{1}{3x+4}=\dfrac{1344}{2017}:\dfrac{2}{3}\)
\(A=1-\dfrac{1}{3x+4}=\dfrac{2016}{2017}\)
\(A=\dfrac{1}{3x+4}=1-\dfrac{2016}{2017}\)
\(A=\dfrac{1}{3x+4}=\dfrac{1}{2017}\)
\(\Rightarrow\)\(3x+4=2017\)
\(3x=2017-4\)
\(3x=2013\)
\(x=671\)
\(\Leftrightarrow\dfrac{7}{12}< A< \dfrac{5}{6}\)
\(\rightarrowđpcm\)
Mik cần từ lâu òi , pn trả lời muộn quá !! Nhưng cảm ơn pn na !!!
Bài 2:
a: \(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{-1;1;2;5;10\right\}\)
hay \(n\in\left\{0;2;3;6;11\right\}\)
b: \(\Leftrightarrow n^2-1+9⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;3;9\right\}\)
hay \(n\in\left\{0;2;8\right\}\)
+ Nếu n lẻ thì 3n lẻ => 3n + 1 chẵn => 3n + 1 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2
+ Nếu n chẵn thì n + 2 chẵn => n + 2 chia hết cho 2 => B = (n + 2).(3n + 1) chia hết cho 2
Vậy B = (n + 2).(3n + 1) luôn chia hết cho 2 (đpcm)
mình mới học lớp 5
có phải:
E= 1.4+4.7+7.10+...+(3n-2).(3n+1) (với n € N*)
F=2.5+5.8+8.11+...+(3n+2).(3n+5) (với n € N)
G=1.4+7.10+13.16+...+97.100
nếu đúng k cho mình nha