Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(n^n-1=n^n-n^{n-1}+n^{n-1}-n^{n-2}+n^{n-2}-...-n+n-1\)
\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1\right)\)
\(\Rightarrow n^n-n^2+n-1=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1\right)+\left(n-1\right).\left(-n\right)\)
\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1-n\right)\)
\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)+\left(1-1\right)\right]\)
\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)\right]\) (1)
Vì \(n^{n-1};n^{n-2};...;n\) và 1 đồng dư khi chia cho n-1 (dư 1)
\(\Rightarrow n^{n-1}-1⋮n-1;n^{n-2}-1⋮n-1;...;n-1⋮n-1\)
\(\Rightarrow\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)⋮n-1\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n-1\right)\right]⋮\left(n-1\right).\left(n-1\right)=\left(n-1\right)^2\)
hay \(n^n-n^2+n-1⋮\left(n-1\right)^2\) (do là số nguyên và n>1)
Vậy với số nguyên n>1 thì \(n^n-n^2+n-1⋮\left(n-1\right)^2\)
ta có: A= \(n^3-6n^2+11n-6\)
<=>A=\(n^3-n^2-5n^2+5n+6n-6\)
<=>A=\(n^2\left(n-1\right)-5n\left(n-1\right)+6\left(n-1\right)\)
<=>A=\(\left(n^2-5n+6\right)\left(n-1\right)\)
<=>A=\(\left(n-1\right)\left(n-2\right)\left(n-3\right)\)
Mặt khác: (n-1) ; (n-2) ; (n-3) là 3 số liên tiếp nên \(\left(n-1\right)\left(n-2\right)\left(n-3\right)\) là tích của 3 số liên tiếp => có 1 số chia hết cho 2 và 1 số chia hết cho 3. mà 2 và 3 nguyên tố cùng nhau nên A chia hét cho (2.3)=6
bạn sai đề rồi:
chứng minh với mọi số nguyên n thì n^2+11n+39 không chia hết cho 49
Ta có:
giả sử: A= n^2 + 11n + 39 chia hết cho 49 => A chia hết cho 7
mà : n^2 + 11n + 39 = (n+9)(n+2) +21 chia hết cho 7
=> (n+9)(n+2) chia hết cho 7
lại có: (n+9) - (n+2) = 7 nên (n+9) và (n+2) đồng thời chia hết cho 7
=>(n+9)(n+2) chia hết cho 49
mà: (n+9)(n+2) +21 chia hết cho 49
=> 21 chia hết cho 49 vô lí => đpcm
https://vn.answers.yahoo.com/question/index?qid=20091017203207AAoSfKD
ban vao link nay thi se co cau tra loi
a) Em tham khảo tại đây nhé:
Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath
Ta có: \(\left(x^{200}+x^{100}+1\right)=\left(x^{100}+1\right)^2\)
\(\left(x^4+x^2+1\right)=\left(x^2+1\right)^2\)
Vì \(1⋮1;x^{100}⋮x^2\forall x\)
\(\Rightarrow x^{100}+1⋮x^2+1\forall x\)
\(\Rightarrow Vớix\in Z,\left(x^{200}+x^{100}+1\right)⋮\left(x^4+x^2+1\right)\)