Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng t/c dãy tỉ : a/b = b/c = c/d = (a + b + c)/(b + c + d). suy ra (a/b)^3 = (a+b+c/b+c+d)^3
Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (do rút gọn
Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\)\(\dfrac{a}{b}+1=\dfrac{c}{d}+1\)
\(\Leftrightarrow\)\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)(đpcm)
Đặt a/b=c/d=K
=>a=b.K ; c=d.K
Thay a=b.K ; c=d.K vào biểu thức ta có:
(a+b)/b=(b.K+b)/b=b.(K+1)/b=K+1 (1)
(c+d)/d=(d.K+d)/d=d(K+1)/d=K+1 (2)
Từ (1) và (2)=>Với a/b=c/d thì (a+b)/b=(c+d)/d
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
=>ad+ac=bc+ac
=>a(c+d)=c(b+a)
=>\(\frac{a}{a+b}=\frac{c}{c+d}\)
\(\Rightarrowđpcm\)
Bài 1: Tìm x
a)
Ta có: \(\frac{3}{x-5}=\frac{4}{x}\)
\(\Rightarrow3x=4\left(x-5\right)\)
\(\Leftrightarrow3x-4\left(x-5\right)=0\)
\(\Leftrightarrow3x-4x+20=0\)
\(\Leftrightarrow-x+20=0\)
\(\Leftrightarrow-x=-20\)
hay x=20
Vậy: x=20
b) Sai đề
Bài 2: Sửa đề: Chứng minh \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)(gt)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)(đpcm)
Đề: Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng: \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\).
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\).
\(\frac{a+c}{b+d}=\frac{bt+dt}{b+d}=\frac{t\left(b+d\right)}{b+d}=t\)
\(\frac{a-c}{b-d}=\frac{bt-dt}{b-d}=\frac{t\left(b-d\right)}{b-d}=t\)
Do đó \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\).