Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(55^{n+1}-55^n=55^n\left(55-1\right)=55^n\times54\)chia hết cho 54 với \(n\in N\)
Do n không chia hết cho 3 => n chia 3 dư 1 hoặc 2
+ Nếu n chia 3 dư 1 thì n = 3.k + 1 => n2 = (3.k + 1).(3.k + 1)
= (3.k + 1).3.k + (3.k + 1)
= 9.k2 + 3.k + 3.k + 1 chia 3 dư 1
+ Nếu n chia 3 dư 2 thì n = 3k + 2 => n2 = (3.k + 2).(3.k + 2)
= (3.k + 2).3.k + (3.k + 2).2
= 9.k2 + 6.k + 6.k + 4 chia 3 dư 1
=> n2 luôn chia 3 dư 1 với n không chia hết cho 3 (đpcm)
Ta có :
\(3^{n+4}+3^{n+3}+3^{n+2}+3^{n+1}\)
\(=\)\(3^n.3^4+3^n.3^3+3^n.3^2+3^n.3\)
\(=\)\(3^n\left(3^4+3^3+3^2+3\right)\)
\(=\)\(3^n.\left(81+27+9+3\right)\)
\(=\)\(3^n.120\)
\(=\)\(3^n.10.12\) chia hết cho \(12\)
Vậy \(3^{n+4}+3^{n+3}+3^{n+2}+3^{n+1}\) chia hết cho \(12\) với mọi \(n\inℕ\)
3n + 4 + 3n + 3 + 3n + 2 + 3n + 1
= 3n .34 + 3n . 33 + 3n . 32 + 3n . 31
= 3n . (34 + 33 + 32 + 31)
= 3n. 120
= 3n . 12 . 10 \(⋮\)12
Vậy 3n + 4 + 3n + 3 + 3n + 2 + 3n + 1 \(⋮\)12
vì n và 2n có tổng các chữ bằng nhau
=>2n và n có cùng số dư khi chia cho 9
=>2n-n chia hết cho 9
=>1n chia hết cho 9 hay n chia hết cho 9 (đpcm)
1/n -1/n+a=a+n/n(n+a) -n/n(a+n
=a/n (n+a )
\(\frac{a}{n.\left(n+a\right)}=\frac{n+a-n}{n.\left(n+a\right)}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n-a\right)}=\frac{1}{n}-\frac{1}{n-a}\)\(\left(đpcm\right)\)