K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

a) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{199}\left(1+3\right)\)

\(=3.4+3^3.4+3^{199}.4=4\left(3+3^3+...+3^{199}\right)⋮4\)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{198}\left(1+3+3^2\right)\)

\(=3.13+3^4.13+...+3^{198}.13=13\left(3+3^4+...+3^{198}\right)⋮13\)

15 tháng 3 2022

\(2x+3y=4.\left(2x+3y\right)=8x+12y\)

\(9x+5y+8x+12y=17x+17y=17.\left(x+y\right)⋮17\)

Vì \(\hept{\begin{cases}9x+5y⋮17\\\left(9x+5y\right)+\left(8x+12y\right)⋮17\end{cases}\Rightarrow8x+12y⋮17}\)

Mà \(2x+3y=8x+12y\)

\(\Rightarrow2x+3y⋮17\)

15 tháng 3 2022

Cái này mk lm nhầm nên đừng chép vô nha!

10 tháng 11 2017

mệt quá

10 tháng 11 2017

a)Ta có:S = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 +...+2^199+ 2^200.

=( 2^1 + 2^2) + (2^3 + 2^4) + (2^5+2^6)+...+(2^197+2^198)+(2^199+2^200).

=2.(1+2)+2^3.(1+2)+2^5.(1+2)+...+2^197.(1+2)+2^199(1+2)

=2.3+2^3.3+2^5.3+...+2^197.3+2^199.3

=3.(2+2^3+2^5+...+2^197+2^199)

Vậy tổng S chia hết cho 3.

Xin lỗi bn,mik o làm kịp

3 tháng 1 2016

Chtt

3 tháng 1 2016

Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy

13 tháng 11 2015

Phân tích ra số bất biến

20 tháng 12 2023

Đặt B = 2² + 2³ + 2⁴ + ... + 2²⁰²³

⇒ 2B = 2³ + 2⁴ + 2⁵ + ... + 2²⁰²⁴

⇒ B = 2B - B

= (2³ + 2⁴ + 2⁵ + ... + 2²⁰²⁴) - (2² + 2³ + 2⁴ + ... + 2²⁰²³)

= 2²⁰²⁴ - 2²

⇒ A = 2² + 2²⁰²⁴ - 2² = 2²⁰²⁴

= 2.2²⁰²³ ⋮ 2²⁰²³

Vậy A ⋮ 2²⁰²³

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Lời giải:

$A=4+2^2+2^3+....+2^{2023}$

$2A=8+2^3+2^4+...+2^{2024}$

$\Rightarrow 2A-A=(8+2^3+2^4+...+2^{2024})-(4+2^2+2^3+....+2^{2023})$

$\Rightarrow A=2^{2024}+8-4-2^2=2^{2024}\vdots 2^{2023}$

Ta có đpcm/

3 tháng 8 2016

Do n không chia hết cho 3 => n chia 3 dư 1 hoặc 2

+ Nếu n chia 3 dư 1 thì n = 3.k + 1 => n2 = (3.k + 1).(3.k + 1)

                                                             = (3.k + 1).3.k + (3.k + 1)

                                                             = 9.k2 + 3.k + 3.k + 1 chia 3 dư 1

+ Nếu n chia 3 dư 2 thì n = 3k + 2 => n2 = (3.k + 2).(3.k + 2)

                                                            = (3.k + 2).3.k + (3.k + 2).2

                                                           = 9.k2 + 6.k + 6.k + 4 chia 3 dư 1

=> n2 luôn chia 3 dư 1 với n không chia hết cho 3 (đpcm)

3 tháng 8 2016

n không chia hết cho 3 => n có dạng 3k + 1, 3k + 2.

*) n có dạng 3k + 1 => n2 = (3k + 1)(3k + 1) = 9k2 + 6k + 1 chia 3 dư 1

*) n có dạng 3k + 2 => n2 = (3k + 2)(3k + 2) = 9k2 + 12k + 4 chia 3 dư 1