Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x-y-z=0\Rightarrow x-z=y,z-y=x,y-x=-z\)
\(B=\left(1-\frac{z}{x}\right)\cdot\left(1-\frac{x}{y}\right)\cdot\left(1-\frac{y}{z}\right)\)
\(\Rightarrow B=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z-y}{z}=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=\frac{-xyz}{xyz}=-1\)
x - y - z = 0
=> x = y + z
y = x - z
-z = x - y
Thay vào B ta được :
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1-\frac{y}{z}\right)\)
\(=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1-\frac{x-z}{z}\right)\)
\(=\left(\frac{-y}{x}\right)\left(\frac{z}{y}\right)\left(\frac{-x}{z}\right)\)
\(=\frac{-yz\left(-x\right)}{xyz}\)
\(=\frac{xyz}{xyz}=1\)
Mình k dám chắc nhá
Ez
ta có \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)
\(\Leftrightarrow A=\left(\frac{y}{y}+\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\left(\frac{x}{x}+\frac{z}{x}\right)\)
\(\Leftrightarrow A=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\left(1\right)\)
theo giả thiết \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z}{x}-\frac{x}{x}=\frac{z+x}{y}-\frac{y}{y}=\frac{x+y}{z}-\frac{z}{z}\)
\(\Leftrightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Leftrightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
theo tính chất dãy tỉ số bằng nhau
\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2x+2y+2z}{x+y+z}=\frac{2\left(x+y+z\right)}{\left(x+y+z\right)}=2\)
\(\left\{{}\begin{matrix}\frac{y+z}{x}=2\Leftrightarrow y+z=2x\left(2\right)\\\frac{z+x}{y}=2\Leftrightarrow z+x=2y\left(3\right)\\\frac{x+y}{z}=2\Leftrightarrow x+y=2z\left(4\right)\end{matrix}\right.\)
thay (2); (3); (4) vào (1)
\(\Leftrightarrow A=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{2z.2x.2y}{xyz}=\frac{2^3\left(xyz\right)}{\left(xyz\right)}=2^3=8\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}\)=\(\frac{z+x}{y}\)=\(\frac{x+y}{z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)= 2
từ \(\frac{y+z}{x}\)=2 suy ra y+z=2x
từ \(\frac{z+x}{y}\)=2 suy ra z+x=2y
từ \(\frac{x+y}{z}\)=2 suy ra x+y=2z
thay vào ta có:
B=(1+\(\frac{x}{y+z}\))(1+\(\frac{y}{x+z}\))(1+\(\frac{z}{x+y}\))
= (1+1/2)(1+1/2)(1+1/2)
=3/2.3=9/2
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(\Rightarrow x=y=z\)
\(\Rightarrow\frac{x}{y}=1;\frac{y}{z}=1;\frac{x}{z}=1\)
\(\Rightarrow B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2.2.2=8\)
Áp dụng tính chất tỉ lệ thức, ta có:
\(\frac{y+z-x}{x}+\frac{z+x-y}{y}+\frac{x+y-z}{2}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow y+z-x=x;z+x-y=y;x+y-z=z\)
Do đó ta có:
\(1+\frac{x}{y}=\frac{z+x-y}{y}+\frac{y+z-x}{y}=\frac{2z}{y}\)
Tương tự ta có:
\(1+\frac{y}{z}=\frac{2x}{z}\)và \(1+\frac{z}{x}=\frac{2y}{x}\)
Do đó biểu thức sẽ bằng:
\(\frac{2x}{z}.\frac{2y}{x}.\frac{2z}{y}=\frac{8xyz}{xyz}=8\)
Áp dụng tính chất tỉ lệ thức có:
(y+z-x)/x + (z+x-y)/y + (x+y-z)/z= (y+z-x+z+x-y+x+y-z)/(x+y+z)= (x+y+z)/(x+y+z)=1
=>y+z-x=x ; z+x-y=y và x+y-z=z
Do đó ta có:
(1 + x/y)= [(z+x-y)/y + (y+z-x)/y] =2z/y
Tương tự có:
1 + y/z=2x/z và 1 + z/x =2y/x
Do đó biểu thức sẽ bằng :
2x/z . 2y/x . 2z/y = 8xyz/xyz =8