Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: Phương trình hoành độ giao điểm là:
\(2x+7=-\dfrac{1}{2}x+2\)
=>\(2x+\dfrac{1}{2}x=2-7=-5\)
=>2,5x=-5
=>x=-2
Thay x=-2 vào y=2x+7, ta được:
\(y=2\cdot\left(-2\right)+7=7-4=3\)
Vậy: A(-2;3)
c: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x=-3,5\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=4\end{matrix}\right.\)
Vậy: C(4;0)
A(-2;3); B(-3,5;0); C(4;0)
\(AB=\sqrt{\left(-3,5+2\right)^2+\left(0-3\right)^2}=\dfrac{3\sqrt{5}}{2}\)
\(AC=\sqrt{\left(4+2\right)^2+\left(0-3\right)^2}=3\sqrt{5}\)
\(BC=\sqrt{\left(4+3,5\right)^2+\left(0-0\right)^2}=7,5\)
Vì \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}=\dfrac{3\sqrt{5}}{7,5}\)
=>\(\widehat{ABC}\simeq63^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-63^0=27^0\)
d: Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=\dfrac{3\sqrt{5}}{2}+3\sqrt{5}+7,5=\dfrac{9\sqrt{5}+15}{2}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot\dfrac{3\sqrt{5}}{2}\cdot3\sqrt{5}=\dfrac{45}{4}\)
a) Vẽ:
(d): \(y=\dfrac{3}{2}x-1\)
(d'): \(y=\dfrac{2}{3}x+1\)
b) Tìm tọa độ giao điểm A của (d) và (d')
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{3}{2}x-1=\dfrac{2}{3}x+1\\y=\dfrac{2}{3}x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=\dfrac{13}{5}\end{matrix}\right.\)
Bài 1:
a) Vì A là giao điểm của (d) và (d') nên hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (d) và (d')
hay x=2x+2
\(\Leftrightarrow x-2x=2\)
\(\Leftrightarrow-x=2\)
hay x=-2
Thay x=-2 vào hàm số y=x, ta được:
y=-2
Vậy: A(-2;-2)
Ta sẽ biểu diễn lại (d)
Có (d) 2x + y - a2 = 0
=> (d) y = -2x + a2
1, Hoành độ giao điểm của (d) và (P) là nghiệm của pt
\(-2x+a^2=ax^2\)
\(\Leftrightarrow ax^2+2x-a^2=0\)(1)
Ta có: \(\Delta'=1+a^3>0\forall a>0\)
Nên pt (1) có 2 nghiệm phân biệt
=> (d) cắt (P) tại 2 điểm phân biệt A và B
Có \(S=-\frac{2}{a}< 0\forall a>0\)
\(P=-a< 0\forall a>0\)
=> A và B nằm bên trái trục tung
2, Theo Vi-et \(x_A+x_B=-\frac{2}{a}\)
\(x_A.x_B=-a\)
Khi đó: \(T=\frac{4}{x_A+x_B}+\frac{1}{x_A.x_B}\)
\(=\frac{4}{\frac{-2}{a}}+\frac{1}{-a}\)
\(=-2a-\frac{1}{a}\)
\(=-\left(2a+\frac{1}{a}\right)\)
Áp dụng bđt Cô-si cho 2 số dương ta được
\(T=-\left(2a+\frac{1}{a}\right)\le-2\sqrt{2a.\frac{1}{a}}=-2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow2a^2=1\)
\(\Leftrightarrow a^2=\frac{1}{2}\)
\(\Leftrightarrow a=\frac{1}{\sqrt{2}}\left(a>0\right)\)
Vậy ...........
b: Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{2}x^2=-\dfrac{1}{2}x-1\)
\(\Leftrightarrow-\dfrac{1}{2}x^2+\dfrac{1}{2}x+1=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào (P), ta được:
\(y=\dfrac{-2^2}{2}=-2\)
Thay x=-1 vào (P), ta được:
\(y=-\dfrac{1^2}{2}=-\dfrac{1}{2}\)
a)
b) Ta có đường thẳng đi qua điểm H(0;-5) nên phương trình đường thẳng đi qua H là:
\(y=0x-5\Rightarrow y=-5\)
Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-x\) là:
\(-5=-x\)
\(\Rightarrow x=5\)
Tọa độ điểm A là (5;-5)
Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-\dfrac{1}{2}x\) là:
\(-5=-\dfrac{1}{2}x\)
\(\Rightarrow\dfrac{1}{2}x=5\)
\(\Rightarrow x=5:\dfrac{1}{2}\)
\(\Rightarrow x=10\)
Tọa độ điểm B là (10;-5)
c) Ta có: A(5;-5) và B(10;-5)
Độ dài đường thẳng AB là \(10-5=5\left(đvđd\right)\)
Có A(5;-5) ⇒ HA = 5 (đvđd)
Xét tam giác OHA vuông tại H áp dụng định lý Py-ta-go ta có:
\(OA^2=HA^2+OH^2\) (tọa độ điểm H(0;-5) nên OH = 5 đvđd)
\(\Rightarrow OA=\sqrt{5^2+5^2}=\sqrt{50}=5\sqrt{2}\left(đvđd\right)\)
Có B(10;-5) ⇒ HB = 10 (đvđd)
Xét tam giác OHB vuông tại H áp dụng định lý Py-ta-go ta có:
\(OB^2=HB^2+OH^2\)
\(\Rightarrow OB=\sqrt{10^2+5^2}=\sqrt{125}=5\sqrt{5}\left(đvđd\right)\)
Chu vi: \(C_{OAB}=AB+OA+OB=5+5\sqrt{2}+5\sqrt{5}\approx23,25\left(đvđd\right)\)
Diện tích: \(S_{OAB}=\dfrac{1}{2}\cdot OH\cdot AB=\dfrac{1}{2}\cdot5\cdot5=12,5\left(đvdt\right)\)
a, bạn tự vẽ
b, Hoành độ giao điểm tm pt
\(\dfrac{x^2}{2}=\dfrac{x}{2}+3\Leftrightarrow x^2-x-6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow x=3;x=-2\)
hay \(x_A=3;x_B=-2\)
\(\Rightarrow y_A=\dfrac{9}{2};y_B=2\)
Vậy (P) cắt (d) tại A(3;9/2) ; B(-2;2)
c, Ta có \(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}=\dfrac{5\sqrt{5}}{2}\)
Theo Pytago ta có \(OA=\sqrt{\left(\dfrac{9}{2}\right)^2+3^2}=\dfrac{3\sqrt{13}}{2}\)
Theo Pytago ta có \(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)
Chu vi tam giác ABC là
\(AB+OA+OB=\dfrac{5\sqrt{5}+3\sqrt{13}+4\sqrt{2}}{2}\)