Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(n^2+5.n+5⋮25\left(1\right)\)
\(\Rightarrow n^2+5.n+5⋮5\)
Do \(5.n⋮5;5⋮5\Rightarrow n^2⋮5\)
Mặt khác, 5 là số nguyên tố \(\Rightarrow n⋮5\)
\(\Rightarrow n^2⋮25;5.n⋮25\) mà \(5⋮̸25\)
\(\Rightarrow n^2+5.n+5⋮̸25\), trái với (1)
Vậy \(n^2+5.n+5⋮̸25\forall n\in N\left(đpcm\right)\)
Ta có: n2 + n = n . n + n = n.(n + 1)
Ta nhận thấy n.(n + 1) là tích của hai số tự nhiên liên tiếp nên chữ số tận cùng có thể là 0 ; 2 ; 6.
Do đó, n.(n + 1) + 6 có thể có chữ số tận cùng là 2 ; 6 ; 8.
Vì tận cùng là 2 ; 6 ; 8 không chia hết cho 5 nên suy ra n2 + n + 6 không chia hết cho 5.
Vậy \(n^2+n+6⋮5\).
Đúng thì tick nha letienluc!
Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5)
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25
mâu thuẫn => điều g/s sai => dpcm
Ta xét 2 trường hợp đơn giản sau:
+ TH1: Số n chia hết cho 5 ( n =5k)
=> n^2 = (5k)^2 = 25k^2 chia hết cho 25
5.n= 5.5k = 25k chia hết cho 25
nhưng 5 không chia hết cho 25
=> n^2+5n+5 không chia hết cho 5
+ TH2: Nếu n không chia hết cho 5 ( n khác dạng 5k)
=> n^2 không chia hết cho 5 => n^2 cũng không chia hết cho 25
=> 5.n cũng không chia hết cho 25
=> 5 cũng không chia hết cho 25
DO đó n^2+5n+5 cũng không chia hết cho 5
Kết luận: n^2+5n+5 không chia hết cho 25 với mọi n thuộc N
3 số cùng ko chia hết cho 25 thì chưa chắc là tổng của chúng ko chia hết cho 25 đâu nhé!
a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25
Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5
Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5
Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k2 + 55k) + 24 không chia hết cho 5
Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5
Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5
b,c tương tự:
n2+n+1=n.(n+1)+1
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó chia hết cho 2.Khi nó cộng với 1 thì sẽ không chia hết cho 2
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó có chữ số tận cùng là 0,2,6 và khi cộng với 1 thì có đuôi là 1,3,7 và không chia hết cho 5
vậy số đó không chia hết cho 2 và 5