K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

Ta có

D = x ( x 2 n - 1   +   y )   –   y ( x   +   y 2 n - 1 )   +   y 2 n   –   x 2 n   +   5

= x . x 2 n - 1   +   x . y   –   y . x   –   y . y 2 n - 1   +   y 2 n   –   x 2 n   +   5

= x 2 n   +   x y   –   x y   –   y 2 n   +   y 2 n   –   x 2 n   +   5

= ( x 2 n   –   x 2 n )   +   ( x y   –   x y )   +   ( y 2 n   –   y 2 n )   +   5

= 0 + 0 + 0 + 5 = 5

Đáp án cần chọn là: D

7 tháng 2 2022

Vì \(A\left(x\right)=x^{2n}+x^n+1\) chỉ có một hằng số là1

đa thức \(x^2+x+1\) cũng chỉ có một hằng số là 1

Để \(A\left(x\right)⋮x^2+x+1\)  thì thì \(A\left(x\right)\) phải có số mũ tương ứng với các bậc như đa thức : => n=1

 

=>2n=2 và n=1

=>n=1

=>2n=2

hay n=1

A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)

B(x)=1-x^n/1-x

A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x

x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)

=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1

29 tháng 5 2023

bn ơi mk chưa hiểu lời giải của bạn ạ

11 tháng 10 2018

Để phép chia x 2 n   :   x 4 thực hiện được thì n Є N, 2n – 4 ≥ 0 ó n ≥ 2, n Є N

Đáp án cần chọn là: C

29 tháng 8 2021

\(\left(x^{2n}+x^ny^n+y^{2n}\right)\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\\ =\left[\left(x^n\right)^2+x^ny^n+\left(y^n\right)^2\right]\left(x^n-y^n\right)\left(x^{3n}+y^{3n}\right)\\ =\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)=x^{6n}-y^{6n}\)

\(E=x^2+6x+11\)

\(=x^2+6x+9+2\)

\(=\left(x+3\right)^2+2>0\forall x\)

\(F=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

20 tháng 9 2021

Cho em hỏi là câu G là gì ạ?

 

2 tháng 2 2019

Bn có thể sửa lại đề ko 

8 tháng 10 2021

kk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk